
Master Thesis
Computing Science - Cyber Security

Radboud University

Fuzzing Using Side Channel
Information

Author:
Stefan Popa
1027672

Start Date:
June 1, 2023
End Date:
February 26th, 2024

First supervisor/assessor:
Assoc. Prof. Erik Poll
erikpoll@cs.ru.nl

Second assessor:
Assoc. Prof. Stjepan Picek

stjepan.picek@ru.nl

Thesis Supervisors/Readers:
Cristian Daniele

cristian.daniele@ru.nl

Seyed Behnam Andarzian
seyedbehnam.andarzian@ru.nl

February 25, 2024

Abstract

Fuzzing or fuzz testing is a popular technique used to test software pro-
grams. The general idea is that an automated software creates and injects
malformed input into a (software) system in order to detect any defects
or vulnerabilities that might exist. In other words, this allows us to dis-
cover whether the system we are testing has any negative reactions to the
malformed inputs, which might indicate security or quality issues. In most
cases, the type of vulnerabilities that are being discovered by a fuzzer in-
clude buffer overflows, denial of service (DoS), cross-site scripting, and code
injections.

Many improvements have been made to fuzz testing over time, such as ex-
panding the code coverage of a fuzzer by using an evaluation, or fitness,
function to enhance the test case mutations. With this, it is ensured that
the fuzzer will find most, if not all, above mentioned vulnerabilities within
a program.

In this thesis, we evaluate the feasibility of introducing a new type of vul-
nerabilities into the scope of fuzz testing - side-channel vulnerabilities. Our
goal is that, in case a side-channel vulnerability exists within the program
that is being analyzed, a fuzzer can use this vulnerability to improve code
coverage. Moreover, we also aim for the fuzzer to be able to extract the
secret information using the side-channel vulnerability. For example, if the
program being fuzzed checks character by character whether the password
given as input is correct, our fuzzer could find this password by maximiz-
ing the execution time, because finding correct characters means that the
program will take longer to execute. We will call the fuzzer which uses side-
channel vulnerabilities during the fuzzing process SCFuzzLibAFL.

Our original goal was to apply our fuzzer on software programs as well as on
a hardware device, such as smart cards. However, due to the many difficul-
ties we have encountered during the process of creating SCFuzzLibAFL, we
only present a detailed analysis of the fuzzer when applied on software pro-
grams which are vulnerable to a timing side-channel, and using only one of
the possible approaches for integrating this side-channel during the fuzzing
process. Taking these scope limitations into account, our conclusion is that
our approach for using a timing side-channel during fuzzing can only be ap-
plied to a limited number of programs, and it is not always enough for code
coverage or to discover the complete secret information.

Contents

1 Introduction 3

2 Related Work 6

3 Technical Background 7
3.1 Fuzzing . 7

3.1.1 Concepts . 8
3.1.2 Techniques . 8
3.1.3 AFL . 9
3.1.4 LibAFL . 13
3.1.5 DifFuzz . 15

3.2 Side-Channel Analysis . 16

4 Design Concept for using Timing Side-Channel Information
during Fuzz Testing 17
4.1 Design Decisions . 18
4.2 Timing Side-Channel Score 19
4.3 High-Level Description . 21
4.4 Password Checker with (Pseudo-)Timing Side-Channel 21

4.4.1 Baseline using AFL 23
4.5 Summary . 25

5 SCFuzzAFL 27
5.1 AFL Functions and Modifications 27
5.2 SCFuzz using AFL++ . 29
5.3 SCFuzz with AFL . 29

5.3.1 First Attempt: AFL Instrumentation & Execution
Time as a Side-Channel using the High-score Approach 29

5.3.2 Second Attempt: AFL Instrumentation & Execution
Time as a Side-Channel & Response Codes as a Pseudo-
Timing Side-Channel using a High-Score Approach . . 30

5.4 Conclusions . 31

1

6 SCFuzzLibAFL 32
6.1 Overview of Implementation 32
6.2 Fuzzing a Password-Checking Program with a Timing Leak . 34

6.2.1 First Attempt: Response Codes as a Pseudo-Timing
Side-Channel using a High-Score Approach 35

6.2.2 Second Attempt: Execution Time as a Side-Channel
using a High-Score Approach 37

6.3 Conclusions . 41

7 Future Work 42

8 Conclusion 44

A SCFuzzAFL 49

B SCFuzzLibAFL 60

2

Chapter 1

Introduction

Fuzzing, or fuzz testing, is an “an automated software testing method that
injects invalid inputs into a system to reveal software defects and vulnerabil-
ities. A fuzzing tool injects these inputs into the system and then monitors
for exceptions such as crashes or information leakage”

1
. First proposed and

developed by Miller et al. [13], fuzzing has become one of the more practical
and popular ways to find bugs in programs. It has been applied to various
software, such as kernels or compilers, and it has a wide range of application
areas, for example fault localization [19].

An extensive body of work exists in this area. Various survey papers [2,
11, 10] explore the current state-of-the-art in fuzz testing. Moreover, a wide
range of new fuzzer implementations have been proposed and explored, us-
ing different techniques to improve on currently available solutions, such as
using input-to-state correspondence to improve feedback-driven fuzzing, us-
ing machine learning to improve input fuzzing and exploiting memory usage
to guide the fuzzer, amongst others [17, 1, 18, 6].

One method of improving fuzz testing that has not been explored as exten-
sively is using side-channels to guide the fuzzing process. Side-channel at-
tacks allow an adversary to uncover secret information using non-functional
program behavior(s), called side-channels. Side-channels refer to timing in-
formation, power consumption or electromagnetic radiation, amongst others.
Side-channels can have serious consequences, as for instance timing vulner-
abilities have been found in Google’s Keyczar Library [9] or how the more
recent Meltdown and Spectre side-channel attacks [12, 8] allowed for critical
vulnerabilities in modern processors to be exploited which resulted in the
uncovering of secret information. Therefore, combining side-channels with
fuzz testing could have interesting results.

1
https://www.synopsys.com/glossary/what-is-fuzz-testing.html

3

DifFuzz [15] and QFuzz [16], as explained in more detail in Chapter 2 and
Section 3.1.5, are the only two papers we could find on this topic. Their
main focus is to use differential fuzzing for finding whether exploitable side-
channel vulnerabilities exist. On the other hand, in our work we try to use
side-channel information to to find the secret data, such as the correct pass-
word of a program, and eventually to guide the fuzzing process in terms of
improving code coverage. If successful, this would be an important achieve-
ment, as this will allow for fuzzing to be used in cases where the source code
is not available, or in cases where instrumentation is not an option. For
example, when we only have access to the binaries or when we are trying
to fuzz hardware devices, such as smart cards. Our original goal was to
create a fully working fuzzer implementation that can be applied on smart
cards, using different side-channels, however due to lack of time and issues
we have encountered throughout our design process, we had to reduce our
scope. Therefore, throughout this work we answer the following two main
research question:

• Can we use side-channel information about the execution time of a
program to guide a fuzzer, such that it can replace the instrumenta-
tion in terms of code coverage? Moreover, can the same timing side-
channel information allow the fuzzer to extract the secret data used by
the program being fuzzed?

Our contributions can be summarized as follows. In Chapter 2 we will in-
troduce the main papers that have explored the possibility of combining
side-channel information with fuzzing, as well as explain how these papers
relate to our own work.

In Chapter 3 we will describe the main concepts and techniques we will be
using throughout this thesis.

Chapter 4 will explain the design concept of adding timing side-channel in-
formation to a fuzzer - which we will call SCFuzz from this point onward.
This explanation includes the required modifications, the various options in
which a side-channel score can be implemented for a timing vulnerability
and a high-level description of the steps taken by a fuzzer with timing side-
channel information, as well as an overview of the attempts we have made
at creating SCFuzz. Here we will also introduce a simple password checking
program which is vulnerable to a timing side-channel, and a quick analysis
of the results obtained by applying AFL on this program, which we will
treat as a baseline for the results obtained with SCFuzz.

4

Chapter 5 details our initial attempts at creating SCFuzz, which involved
modifying the fuzzers American Fuzzy Lop, or AFL and AFL++ to use
timing side-channel information during the fuzzing process. We explain the
main changes, the various versions and the main issues we believe to be the
reasons why these attempts have failed.

In Chapter 6 we present our attempt at creating SCFuzz using LibAFL.
We explain the different LibAFL modules that are necessary for a working
fuzzer, our changes and additions to these modules for using timing side-
channel information, the various versions and the reasoning behind them
and an analysis of the results that led to our conclusion that our implemen-
tation of SCFuzzLibAFL can be used successfully only on a limited number
of software programs.

In Chapter 7 we offer an overview of what we consider to be interesting
remaining issues to tackle regarding the use of side-channels in fuzz testing.

5

Chapter 2

Related Work

There is a large body of work on fuzzers, increasing fuzzer efficiency and
coverage and on using fuzzers to discover whether exploitable side-channel
vulnerabilities exist. However, for the work we perform in our thesis, three
papers are most relevant.

DifFuzz [15] uses differential fuzzing, as explained in Section 3.1.2 and
3.1.5, to discover inputs that reveal side-channel attack vectors, with the
main focus on time and space vulnerabilities. This is slightly different than
our goal, e.g., use side-channel information to guide the fuzzer towards code
coverage or finding the secret data. However, DifFuzz does offer a good basis
on what changes are required to introduce side-channel information in the
fuzzing process.

QFuzz [16] builds upon the above work. The main difference is that it also
allows for a quantitative measurement of the side channel vulnerabilities,
or in other words, whether or not a detected vulnerability can, in fact, be
exploited. It achieves this using a similar principle as DifFuzz, however it
does not have any added value over DifFuzz for our own work. Therefore,
we will mainly focus on and use DifFuzz.

Finally, in his thesis [14], Gerdriaan Mulder looked into guiding the AFL
fuzzer as well as extending its coverage by using side-channel information
on JavaCard applets. The main focus was on testing a modified version of
AFL that used side-channel information on a password-checker, and guiding
the fuzzing process using status words and timing information. However,
the goal of the experiments is not clearly defined and the conclusions that
are being drawn are inconclusive.

6

Chapter 3

Technical Background

As described in Chapter 1, we will now give a detailed overview of the
concepts and techniques we will be using throughout our work. In Section
3.1 we will offer a definition of fuzzing and its related concepts, as well as
describe the various techniques used within fuzz testing. Additionally, in
3.1.3, 3.1.4 and 3.1.5, the most important details about AFL, LibAFL and
DifFuzz will be given, as these are the three main fuzzers we have used and
based our work upon. Section 3.2 will describe side-channel analysis from a
high-level standpoint and emphasize the relevance to our experiments.

3.1 Fuzzing

The term fuzzing refers to the technique of injecting invalid or malformed in-
puts into a system using an automated software. A fuzzing tool will monitor
the system’s behavior to these inputs and record any crashes, information
leakages, software defects and vulnerabilities that will occur.

Before providing more details, we will give a trivial example about how the
fuzzing process works. Assume we have a program that uses an integer
variable to store the result of a user’s choice between 3 different questions.
When the user picks a value for the question, the program expects the
value to be 0, 1 or 2. However, what if we transmit -3, or 255? This is
possible, as an integer can take any value between -2,147,483,647 and
2,147,483,647 in most computers and programming languages. If the pro-
gram does not address this issue, it may cause crashes or lead to security
issues: (un)exploitable buffer overflows, Denial of Service attacks etc.

7

3.1.1 Concepts

As explained in the definition above, the goal of fuzzing, or fuzz testing,
is to introduce inputs that are intentionally malformed into a system. In
this way, failures or defects that exist within the targeted system will be
identified. Every fuzzer, or fuzzing tool, has three key components: a poet,
a courier and an oracle. These are defined below.

The poet is the process starter. It creates test cases that are going to be
used on the target system. These cases are based on the type of fuzzing
that is being performed, which can be defined into generational, mutational,
evolutionary, and differential fuzzing. These will be explained in detail in
Section 3.1.2

1
.

The courier, as the name suggests, is supposed to deliver the cases to the
target system. The delivery process varies per type of fuzzing that is being
performed, however details are not relevant for our work

1
.

The oracle has as main goal the monitoring of the test cases as well deciding
whether a test has passed or failed. Checking for a failure within the system
is important, as otherwise the developers of the system would not be able
to identify and fix it

1
.

3.1.2 Techniques

Depending on level of analysis and dependency on the source code, fuzzers
can be classified intowhite-box, gray-box and black-box fuzzers. White-
box fuzzers have access to the complete source code of the target system.
Therefore, they are capable of performing an analysis on the code and derive
information about the effects of the test cases on the program state. Black-
box fuzzers can only query the target system and record the response. Thus,
they do not have access to the source code and cannot perform an analysis
on it. Gray-box fuzzers also cannot access the source code, however they
can perform an analysis during the execution of the program [10].

As mentioned in Section 3.1.1, fuzz testing can also be divided into gen-
erational, mutational, evolutionary, and differential fuzzing. We will
now explain these notions in more detail.

1
While not present in any scientific paper that we have cited throughout our work, we

consider this division to be easy-to-understand for anyone who is not experienced with
fuzzing tools. This information is taken from: https://www.synopsys.com/glossary/what-
is-fuzz-testing.html

8

Generational fuzzing uses inputs generated from scratch. Therefore, these
fuzzers do not need a set of input files. They will use the known, predefined
format, and will generate new inputs based on this format. Mutational
fuzzing uses an existing set of (valid) inputs and modifies these throughout
the process.

Evolutionary fuzzing is similar to mutational fuzzing. The difference is
that it uses various genetic algorithms to create less but better inputs for
the target system. The evaluation of these inputs is being done by a fitness
function. Only the inputs that pass this fitness evaluation will be used for
further generation [17]. The fuzzer we have used for our initial attempts at
creating a fuzzing tool that uses timing side-channel information, AFL, is
an example of a evolutionary fuzzer.

Differential fuzzing is a newer type of fuzz testing, which is based on a
technique called differential testing. This type of testing compares a pro-
gramme’s behavior to a certain, set baseline and draws conclusions based on
this comparison. Similarly, with a differential fuzzer, multiple programmes
are tested with the same input and the differences are being analyzed. Dif-
Fuzz is an example of a differential fuzzer.

3.1.3 AFL

Even though fuzzing is a well known technique of testing software pro-
grams, most fuzzers are relatively shallow. They make random mutations
to the input files and thus it makes it very unlikely to find certain paths
that might contain vulnerabilities. AFL solves this problem by using an
instrumentation-guided genetic algorithm, which is able to detect well-hidden
branches or changes to the program control flow [7]. In the following sec-
tions we will explain the most important technical details of AFL, as they
are described in its technical paper [20].

High-Level Description

While the internals of the fuzzer are more complex, the steps that the overall
algorithm follows can be summarized as follows [7]:

1. The initial inputs, which are provided by the user, are loaded into the
queue.

2. The next input is taken from the (the front of the) queue and given
to the fuzzer.

3. The fuzzer attempts to reduce the input’s (or test case’s) size using
trimming as long as the behavior of the program does not change.
Once this happens, this means that the smallest size has been reached.

9

4. The input is repeatedly mutated by the fuzzer, using a variety of tra-
ditional fuzzing strategies. Note that here the mutations applied on
the input are independent of each other, as they are not chosen from
a sequence of mutations.

5. If one of the above mutations results in new edge coverage (which is
being recorded by the inserted instrumentation), the mutated output
becomes a new entry in the queue, which is added to the front.

6. Go back to step 2.

Fuzzer Modules

The AFL fuzzer combines many different working parts, however based on
the high-level description we presented in Section 3.1.3 we can create an
abstraction and divide AFL into four main modules, which can also be seen
in Figure 3.1. Note that many other fuzzers have similar functionality, and
thus this division is generalizable.

1. The queue module. It ensures that the many (mutated) inputs are
properly ordered, keeps track of the favored inputs, removes the unnec-
essary or superfluous inputs and reduces the size of the inputs. Part
of the poet and the courier, as described in Section 3.1.1.

2. The mutations module. Its main role is to generate mutations for
the input that is currently used by the program under test. The mu-
tations include various fuzzing strategies, however the details are not
important. Part of the poet, as described in Section 3.1.1.

3. The shared memory or bitmap module. Its purpose is to monitor
and store the branches that are being reached during fuzz testing by
the different inputs. The process is explained in slightly more details
later in this section. Part of the oracle, as described in Section 3.1.1.

4. The instrumentation module. It guarantees the generation of the
instrumentation that will be added to the program that is being fuzzed.
The main role of the instrumentation is to record the branch jumps
and report these back to the fuzzer. Part of the poet, as described in
Section 3.1.1.

10

Additionally, we consider modules 1 to 3 to be part of the main code of
AFL, and that module 4 can be further divided into two submodules, which
again can also be seen in Figure 3.1.

a. The code that generates the instrumentation applied to the System
Under Test (SUT). This is part of the AFL implementation itself.

b. The actual instrumentation applied on the SUT. This is additional
code added to the SUT in order to monitor branch jumps during pro-
gram execution.

Figure 3.1: AFL Module Structure

Edge Coverage Measurement

In order to measure how many times a branch (or edge) is reached, AFL
makes use of what is called instrumentation. To this extent, the following
piece of code is inserted at branch points [20]:

cur_location = <COMPILE_TIME_RANDOM>;

shared_mem[cur_location ^ prev_location]++;

prev_location = cur_location >> 1;

Code 3.1: Instrumentation code inserted by AFL at branching points [20]

The cur location value is set randomly at compile time as this allows
for uniformity to be kept for the XOR operation. shared mem is a 64Kb
array, which is seen as a byte map by AFL. This means that every byte
being set or incremented in the byte map represents a hit for the tuple
<src branch, dst branch>. Such an implementation is used as it offers a
more fine-grained analysis of the execution path of a program, e.g., it can

11

distinguish between a path that has the same starting and ending branch,
but different intermediary jumps [20]. Take as an example the following two
execution paths:

1. A->B->C->D->E->F
This contains the branch tuples AB, BC, CD, DE and EF.

2. A->B->D->C->E->F
This contains the branch tuples AB, BD, DC, DE and EF.

These two execution paths are seen as being different by AFL, even though
both start at branch A and end at branch F. This allows for the discovery
of vulnerabilities that are much more hidden in the underlying code, and
will be harder to detect just with simple block coverage. To illustrate the
memory layout of shared mem, take a look at Figure 3.2.

Figure 3.2: AFL Shared Map Implementation

Detection of New Behaviors

As explained in Section 3.1.3, the fuzzer maintains a shared, or global, map
of previously discovered execution paths, which can be efficiently updated
in a few instructions. This map allows for a better mutational process of
inputs. If a certain input file produces new tuples in the execution path, it
will be saved and given to additional processing. If no new tuples are discov-
ered, the input file will simply be discarded (see step 5 in Section 3.1.3). As
we have previously explained, this approach conducts a more fined-grained
analysis of the program execution, while avoiding any intensive computa-
tions [20].

12

To illustrate this approach, we consider the following two execution paths:

1. A->B->C->D->E->F
This contains the branch tuples AB, BC, CD, DE and EF.

2. A->B->C->D->A->F
This contains the branch tuples AB, BC, CD, DA and AF.

Path #2 is seen as being substantially different than path #1 because of the
tuples DA and AF. Therefore, once #2 has been registered within the shared
memory, the following path will not be seen as unique:

3. A->B->C->D->A->B->C->D->A->B->C->D->E->F
This contains the branch tuples AB, BC, CD, DA, DE and EF.

This is because the tuples that are present within path #3 have been seen
before by the fuzzer and stored in the shared memory [20].

3.1.4 LibAFL

The idea behind LibAFL lies within the fact that most fuzzers, while efficient
and effective, are not easily extensible or modifiable. This means that, in
most cases, a developer or researcher either has to fork one of these existing
fuzzers, or create one from scratch. This results in a lot of unecessary work
and incompatibility issues between fuzzers. LibAFL aims to solve this issue
by offering a “collection of reusable pieces for individual fuzzers” [3]. This
makes the process of creating a fuzzer much more modular and straightfor-
ward.

As LibAFL is a collection of different features from different fuzzers, there
are many combinations that can be created. Therefore, offering a high-level
description is not necessary in this section. However, LibAFL consists of
different components, or modules, which we will describe in short based on
their book [3]. More details about the various implementation options for
these modules and their functionality can be found at the LibAFL docs [4]
or the LibAFL research paper [5].

13

Core Components

The LibAFL architecture can be divided into 8 core concepts or entities,
which can also be used as an abstraction for other fuzzer designs, as men-
tioned in the LibAFL book [3]. This architecture has similarities with our
own abstraction of AFL’s fuzzing process, as described in Section 3.1.3.

• The Observer. As the names suggests, the role of the Observer is to
provide the fuzzer with information gathered during the execution of
the program being fuzzed. The observations can consist of a coverage
map, execution time or maximum stack depth, amongst others.

• The Executor. This entity’s main role is to define how to execute
the target program. Moreover, the Executor is also responsible with
informing the target about the volatile operations related to a single
run, such as the input being used or writing to a certain memory
location. An Executor can also hold a set of Observers which gather
information about each program run.

• The Feedback. The role of the Feedback entity is to classify whether
or not an execution of the program being fuzzed is interesting or not.
If the execution was interesting, then the respective input is added
to a corpus. What is meant by “interesting” is abstract, but, for
example, an input that results in a higher execution time than the
current average can be considered interesting. A Feedback entity is
strongly related to the Observer entity.

• The Input. In an abstract view, the Input entity is the internal rep-
resentation of the program input. In the most common case, the input
of the program is a byte array, however, more complex representations
can also be used.

• The Corpus. Simply put, the Corpus is the entity where all testcases
are stored. A testcase is defined as “an Input and a set of related
metadata like execution time for instance” [3]. A testcase is added to
the Corpus if it is considered interesting by the Feedback entity.

• The Mutator. This entity’s role is to generate new instances of Input
derived by mutating the current Inputs.

• The Generator. A Generator is used to generate an instance of Input
from scratch, usually by utilizing a random number generator.

• The Stage. This is an entity that applies a Mutator on an Input from
the Corpus. How many times this is done, can be defined using various
parameters.

14

3.1.5 DifFuzz

As explained in Section 2, DifFuzz is a newer fuzzer which allows for the
discovery of side-channel vulnerabilities using differential fuzzing. There-
fore, the main idea is that DifFuzz divides the program under test, say f ,
into two copies, using the same values for the public input, say pub, but
different values for the secret input, say sec1 and sec2 respectively. There-
fore, the input for f is the tuple (pub, sec1, sec2), and the two copies of f
are f (pub, sec1) and f (pub, sec2). Then DifFuzz computes the difference
over the side-channel measurements (either time or space) between the two
executions, which will be treated as a score. If the resulting score is large,
then a side-channel vulnerability is present.

High-Level Description

The fuzzing approach used by DifFuzz can be summarized as follows [15]:

1. The initial inputs, which are provided by the user, are loaded into the
queue.

2. The user then needs to provide a driver, which parses the input file(s)
into (pub, sec1, sec2). The driver also executes f (pub, sec1) and
f (pub, sec2). Providing the driver is an extra step from AFL’s work-
flow, as explained in Section 3.1.3.

3. The next input is taken from the (the front of the) queue and given
to the fuzzer.

4. The input is repeatedly mutated by the fuzzer, using a variety of tra-
ditional fuzzing strategies. Note that here the mutations applied on
the input are independent of each other, as they are not chosen from
a sequence of mutations.

5. If one of the above mutations results in new edge coverage or higher
score (which are being recorded by the inserted instrumentation), the
mutated output will become a new entry in the queue, which is added
to the front.

6. Go back to step 3.

The overview of this approach is shown in Figure 3.3 There are two impor-
tant things to note here. Firstly, DifFuzz makes use of custom instrumen-
tation to record side-channel information - e.g., execution time or memory
consumption. This is important as in Section 4 we will explain how this is
different from our approach. Secondly, the driver is target specific, and thus
a driver has to be manually created for each of the programs that we want
to fuzz.

15

Figure 3.3: High-Level Description of DifFuzz fuzzing process

3.2 Side-Channel Analysis

Side-Channel Analysis aims to investigate whether or not cryptographic al-
gorithms or programs working with secret data, which are running on a
hardware device, leak any sensitive information via side-channels. A side-
channel can refer to timing information, power consumption, or electro-
magnetic radiation, amongst others. Similarly, side-channel attacks aim to
exploit such vulnerabilities by finding correlations between the information
leaked through a side-channel and the secret data.

An important property used in side-channel analysis is non-interference,
which means that a program is secure if no secret information can be in-
ferred from observations, such as power consumption, made from the target
hardware device. One of the techniques used to check this property is called
self-composition, which is what both DifFuzz [15] and QFuzz [16] are us-
ing. The details of how this technique works are not relevant for our thesis.

As described in Chapter 1, our end goal was to use our custom fuzzer on
smart cards. To this extent, the most relevant side-channels are timing
leaks and power consumption. Timing leaks side-channels are based
on the execution time of a program, while power consumption side-channels
make use of the power usage information during the execution of a program.
It is important to note that power consumption is an implementation-specific
characteristic, as it depends on the data and operations that are being ex-
ecuted. Therefore, being able to use such a side-channel could potentially
improve the efficiency of a fuzzer.

16

Chapter 4

Design Concept for using
Timing Side-Channel
Information during Fuzz
Testing

In Chapter 1, we stated our objective for this thesis, which is to create a
fuzzer that uses timing side-channel information to guide the fuzzing process
towards finding the secret data being used by the program being fuzzed and
eventually toward improving code coverage. As we also mentioned, we will
call this fuzzer SCFuzz. SCFuzz is the first attempt at creating a fuzzer for
these purposes.

In the next sections we will present various decisions and notions that build
up our design process for using timing side-channel information during fuzz
testing. In Section 4.1 we present the main design decisions we have made
while working on our implementation. Section 4.2 will explain the purpose
of a score when implementing timing side-channel measurements during fuzz
testing as well as the different ways in which the score can be computed in
our implementation of SCFuzz. In Section 4.3 we offer an overview of the
steps taken by SCFuzz during the fuzzing process. Section 4.4 contains the
password checking program which is vulnerable to a timing side-channel,
as well as a brief explanation of certain decisions we have made about this
program. Here we will also present a short analysis of the results obtained
after fuzzing the program using AFL, which will give us a baseline for the
results obtained with SCFuzz. Section 4.5 summarizes the main decisions
from the design process as well as offers an overview of the different SCFuzz
versions, which we will present in more detail in the next chapters.

17

4.1 Design Decisions

In order to implement side-channel information into the fuzzing process, we
first need to decide what side-channels we should use. As explained in Sec-
tion 3.2, there are multiple options. We have chosen execution time as
a side-channel for our initial SCFuzz attempts, as this is the easiest side-
channel to implement - we can simply record the the time when the execution
starts and the time when the execution ends, and record the difference. We
will additionally briefly describe how power consumption can be used as
a possible side-channel for the fuzzing process in future work.

In Section 3.1.3, we presented the four modules in which the AFL fuzzer
can be divided into. However, we also mentioned that this division can
be similarly applied to other fuzzers. Using this division, there are two
possibilities in which we can modify an already existing fuzzer - or create
our own - to use timing side-channel information for guiding the fuzzing
process:

1. Modify the instrumentation which is applied on the System Under
Test (SUT) to record the program execution time.

2. Modify the fuzzer’s main code such that it measures the time between
when the input is sent to the SUT and when the SUT outputs results.

DifFuzz uses approach 1, as they measure execution time by counting (byte)
instructions, since it is built on top of the Kelinci-WCA. Kelinci-WCA is
a fuzzer interface which allows for AFL to be used on Java programs, and
thus both DifFuzz and Kelinci-WCA use custom instrumentation for edge-
coverage. Our end goal was to test SCFuzz on smart cards, which do not
allow for instrumentation to be added to the code running on them. Thus,
this approach would be unfeasible in our case. We decided to go with the
approach 2 (which is also confirmed in the DifFuzz paper as being a valid
option [15]).

To guide the fuzzing process using timing side-channel information, we need
to ensure that we properly store and interpret the side-channel measure-
ments, e.g., the execution time of a program, in our case. This can be
achieved by making use of a score value which will guide the fuzzer into,
for example, finding the secret data. We will further illustrate this in Section
4.2.

18

To make it easier for us to analyze the SCFuzz implementation, we want
to have a relatively simple program which is vulnerable to a timing side-
channel. We decided to use a password checker which compares the user
input with the correct password character by character, and thus has a tim-
ing leak. We will further explain this program in Section 4.4.

Since we are incrementally going to create our fuzzer, we make the follow-
ing assumptions with regard to the attacker model for the initial SCFuzz
versions, as presented in Chapter 5 and 6:

1. We know the program we are fuzzing has a timing vulnerability

2. We know what is the functionality of the program we are fuzzing

3. We can use program specific information in the fuzzing process

Thus, we will be using a white-box approach, as described in Section 3.1.2.
These assumptions ease up the process of creating an initial implementation
of SCFuzz, as there is more information we can use during the fuzzing pro-
cess. For example, we can implement a pseudo-timing side-channel using
return codes or create a dictionary such that the mutations applied on the
test cases only result in strings containing ASCII characters, when fuzzing
the vulnerable password checker program presented in Section 4.4. Our end
goal was for our final version of SCFuzz to only use the actual execution
time of the program, and thus use more of a gray-box approach, and thus
we will shortly discuss such an approach in future work.

There are also two possible options for creating the actual implementation
of SCFuzz. We can use an already existing fuzzer with its complete func-
tionality, e.g., edge-coverage instrumentation for AFL, and simply add the
necessary changes to include side-channel information, or we can make our
own fuzzer. Throughout our thesis we have explored both possibilities, which
will be described in more detail in Chapter 5 and Chapter 6, respectively.

4.2 Timing Side-Channel Score

As mentioned in Section 4.1, in order to guide the fuzzing process using
timing side-channel information, we need a score value. Since we are using
the execution time of a program as a side-channel for our implementations
of SCFuzz, we need to find a way to attribute a score with regard to the
program execution time to each entry in the input queue. This score will
then be used by the fuzzer to keep interesting inputs and mutate them fur-
ther.

19

There are two reasonable ways to compute the score of the individual inputs
with regard to the execution time. Before we can formalize these methods,
we need some variables.

• i: The input used by the current execution of the program being
fuzzed.

• desci: A descendant of input i, obtained by mutating input i.

• D: The set of all descendants desci for a certain input i.

• scorei: The score attributed to input i after it has been processed.

• start time i: The exact time at which the execution of the program
being fuzzed with input i has started.

• end time i: The exact time at which the execution of the program
being fuzzed with input i has finished.

• diff (A,∀s ∈ S): The function diff computes the number of different
results after applying computation A on all elements s in set S.

• t(x, α): The function t evaluates to true if value x has not changed
after α seconds.

The two options for computing the score are formalized below.

1. High-score Approach
scorei = end timei − start timei
if score i ≥ high score then high score = score i
SCFuzz will thus only keep (and mutate) the input i if it results in a
score higher or equal to the current high score.

2. Unique Descendants Approach
scorei = diff (end timedesci − start timedesci ,∀desci ∈ D)
if t(scorei, α) continue with next i
In other words, scorei is computed by counting the number of descen-
dants that result in a different execution time. When no new execution
times are discovered from the current input after α seconds, we proceed
with the next input.

Because of the assumptions described in section 4.1, and because it is much
easier to implement, we have decided to proceed with the High-score
Approach for our implementations of SCFuzz, applied on the vulnerable
password-checker program. However, as mentioned in 4.1 as well, that means
our implementations are going to use a white-box approach, as we know the
program will take longer to execute when the fuzzer finds more correct char-
acters for the password. We will discuss how could the second the Unique
Descendants Approach be a better option and thus worth exploring in
future work.

20

4.3 High-Level Description

Similarly to the fuzzing process of AFL and DifFuzz, which were described
in Section 3.1.3 and Section 3.1.5 respectively, the steps for the overall al-
gorithm of SCFuzz are as follows:

1. The initial inputs, which are provided by the user, are loaded into the
queue.

2. The next input is taken from (the front of the) queue and given to the
fuzzer.

3. The input is repeatedly mutated by the fuzzer, using a variety of tra-
ditional fuzzing strategies. Note that here the mutations applied on
the input are independent of each other, as they are not chosen from
a sequence of mutations.

4a. If the current input results in a higher score than the current highest
value for the score, we will keep this input in the queue for further mu-
tations and go back to step 2 (Option 1 - High-score Approach).

4b. If t(scorei, α) evaluates to true for the current input, go back to step
2 (Option 2 - Unique Descendants Approach).

4.4 Password Checker with (Pseudo-)Timing Side-
Channel

As explained in Section 4.1, we will make use of a password checking program
which is vulnerable to a timing side-channel, in order to test our initial
implementations of SCFuzz. This program is written in C, and can be seen
in Code 4.1.

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <signal.h>

4

5 int main(int argc, char *argv[]) {

6 char pub[7];

7 char sec[7]="mysecurepassword123";

8 int pub_len, sec_len = 7;

9 char ok;

10

11 if(argc < 2) {

12 printf("No argument passed through command line.\n");

13 return 0;

14 }

15 else {

16 printf("First argument is: %s\n", argv[1]);

17 }

21

18

19 FILE* fptr = fopen(argv[1], "r");

20

21 if(fptr != NULL) {

22 pub_len = fread(&pub, 1, 7, fptr);

23

24 if(fread(&ok, 1, 1, fptr) != 0) {

25 printf("Password too long.\n");

26 return 2;

27 }

28

29 pub[pub_len - 1] = '\0';

30 printf("%s \n", pub);

31

32 fclose(fptr);

33 } else {

34 printf("Not able to open the file.\n");

35 return 1;

36 }

37

38 if (pub_len != sec_len) {

39 printf("Lengths do not match.\n");

40 return 3;

41 }

42

43 for (int i = 0; i < pub_len; i++) {

44 if (pub[i] != sec[i]) {

45 printf("Wrong character.\n");

46 return i + 4;

47 }

48 sleep(1);

49 }

50

51 printf("Correct password.\n");

52 raise(SIGSEGV);

53 return 400;

54 }

Code 4.1: Password Checker with Timing Leak - C

There are some important attention points about this vulnerable password
checking program:

• We have different return codes for all the possible cases at which the
program can end.

• The return codes are in incremental order such that the fuzzer can be
guided towards finding the correct password (see assumptions in 4.1).
We can think of these return codes as a pseudo-timing side-channel.

• We raise an error when the correct password is entered to more easily
see when this case is reached by SCFuzz within the status screen.

• We ensure that there are no other vulnerabilities, such that no addi-
tional crashes can occur when fuzzing this program. In this way, we
can confirm that our crash is indeed caused by the correct password
being found.

22

SYSTEM SETUP

Operating System Kali 2022.4 (Virtual Machine)

CPU AMD Ryzen 7 5800H, 3.2 GHz, 8 Core

RAM 16 GB

GCC Version v13.2.0

Rust Version v1.74

AFL Version v2.51b

Table 4.1: The system setup that was used throughout our thesis

• To the extent possible, with the exception of the loop iterating through
the characters of the user password (lines 43 - 48 in Code 4.1), we
attempted to make the program constant time, such that minor differ-
ences in execution time will not cause SCFuzz to lose the path to the
correct password. However, this is not something we can fully prevent.

4.4.1 Baseline using AFL

In order to have a baseline for the results we obtain using SCFuzz, we fuzz
the vulnerable password checking program using an unmodified version of
AFL. The system setup is given in Table 4.1 and the results are shown in
Table 4.2. As can be seen, AFL is capable of finding the correct password,
without any modifications for using side-channel information, assuming the
program will crash once this password is given. However, it is important to
note that this is possible, in part, due to the way we have implemented our
password-checking program, e.g., each possible program state has its own
unique branch, and thus AFL’s edge-coverage algorithm and instrumenta-
tion is able to identify these different branches, as explained in Section 3.1.3.
Moreover, in the case of the loop on lines 43 - 48 from Code 4.1, AFL is
not able to make any inferences about how many characters it guessed cor-
rectly, as finding a correct character will not result in a different branch
being discovered. This is also proven by the output of the AFL terminal
seen in Figure 4.1. There we can see 8 different execution paths are found
(total paths entry on the status screen), which is the same as the amount
of different program branches in Code 4.1. Since the mutations applied by
AFL on the inputs are random, the fuzzing process at that point in the
program is thus also random, and not guided by how many characters have
been guessed correctly. This can again also be seen in the results shown in
Table 4.2, as the amount of time it takes for AFL to find the correct pass-
word varies greatly between runs and no clear conclusions can be made, e.g.,
longer passwords do not necessarily take longer to be found. The average
time seems to be slightly better corellated to the password length, but even
here, myse has a smaller value for the average time than mys.

23

Figure 4.1: AFL Status Screen running on the Password Checker with
Timing Leak - C Program, for password mys

Another important observation is that AFL was not able to find the correct
password for the last fuzzing attempt presented in Table 4.2. When the
correct password is mysecu1, AFL was not able to find this password after
30 minutes of fuzzing for all five fuzzing runs. We have decided to create
this fuzzing attempt as a way to mitigate a possible bias that can appear
when the characters of the correct password are only literals, a bias that can
also explain the absence of correlation between password length and time it
takes AFL to find the password. Explaining this behavior is out of scope
for this thesis.

Based on the preliminary findings explained above, we expect that SCFuzz
will be able to find the correct password regardless of the format of the pass-
word string, and moreover that there will be a stronger correlation between
password length and the amount of time it takes the fuzzer to find the cor-
rect password. This in turn will also prove that the changes we make for
implementing side-channel information in the fuzzing process actively guide
the fuzzer towards finding the secret data. Additionally, we also expect that,
based on the number of different execution times found during the fuzzing of
a program with SCFuzz and based on their respective inputs, we are able to
replace the instrumentation module, as described in Section 3.1.3, for code
coverage, using the Unique Descendants Approach.

24

PASSWORD ATTEMPT #1 TIME ATTEMPT #2 TIME ATTEMPT #3 TIME

my 1 min 2 sec 22 sec 13 sec

mys 2 min 2 min 12 sec 5 min 22 sec

myse 9 min 10 sec 1 min 22 sec

mysec 3 min 4 sec 5 min 1 sec 10 min 50 sec

mysecu 3 min 51 sec 11 min 20 sec 30 min (!)

mysecu1 30 min (!) 30 min (!) 30 min (!)

ATTEMPT #4 TIME ATTEMPT #5 TIME AVERAGE TIME

14 sec 7 min 9 sec 1 min 48 sec

1 min 50 sec 16 sec 2 min 20 sec

31 sec 20 sec 2 min 16 sec

19 sec 5 min 3 sec 4 min 51 sec

7 min 1 sec 15 min 56 sec 9 min 32 sec

30 min (!) 30 min (!) -

Table 4.2: Total time to find the correct password when using plain AFL on the

vulnerable password checking program. The first column shows the password we

are trying to find, and the other six columns show how long it took AFL to find

that password as well as the average time for the five attempts, respectively. The

symbol (!) means that the fuzzing attempt was unsuccessful in finding the correct

password, and the average time does not include the unsuccessful attempts

4.5 Summary

This chapter contains various decisions that build up our design process for
using timing side-channel information during fuzz testing. We will summa-
rize these decisions below:

1. We use execution time as a side-channel for the SCFuzz implemen-
tations seen in Chapters 5 and 6.

2. We measure execution time using approach 2, as seen in Section 4.1.

3. To use side-channel information within fuzz testing, we need a score
and a way to process this score. We will be using the High-score
Approach for the SCFuzz implementations described in Chapters 5
and 6, as explained in Section 4.2, while the Unique Descendants
Approach will be left for future work.

4. The SCFuzz implementations described in Chapters 5 and 6 are ap-
plied on the password checker program seen in Section 4.4, program
which has a timing leakage.

5. The results obtained using the SCFuzz implementations described in

25

Chapters 5 and 6 are compared to the baseline result obtained using
AFL, as seen in Section 4.4.1.

6. The SCFuzz versions described in Chapters 5 and 6 implement a white-
box approach, using the assumptions explained in Section 4.1.

7. We can implement SCFuzz by either modifying an already existing
fuzzer, or by making our own. Thus, we have the following SCFuzz
versions:

• SCFuzzAFL: This version uses AFL’s complete underlying func-
tionality, e.g., the instrumentation used for edge-coverage, in ad-
dition to the timing side-channel information. Described in Chap-
ter 5.

• SCFuzzLibAFL: This version uses only basic fuzzer modules,
and we add our own functionality using the timing side-channel
information. Described in Chapter 6.

26

Chapter 5

SCFuzzAFL

As mentioned in Chapter 4, our first implementation of SCFuzz will use AFL
as the underlying fuzzer, together with our changes, which implement the
design decisions as described in Section 4.1, to include timing side-channel
information. We decided to take this approach first, as the modifications
that are required are similar (and based on) the DifFuzz implementation,
which also uses AFL. Moreover, since the instrumentation can be disabled
in AFL, it would not result in issues when working with smart cards.

In Section 5.1, we describe the functions in AFL’s code that we are interested
in and the required modifications to these functions such that execution
time can be used as a timing side-channel in the fuzzing process. Section
5.2 explains why we initially opted for AFL++, and what issues we have
encountered that caused us to not continue with this version. In Section
5.3 will present various attempts at creating a version of SCFuzz using AFL
and the respective results. Moreover, we will also offer an explanation of
why we believe we were unsuccessful in creating this version. Section 5.4
summarizes the main takeaways from the implementation process.

5.1 AFL Functions and Modifications

The main issue with regard to integrating timing side-channel information
in AFL is how to properly store the score value. We discovered that there
are two ways in which the timing information can be added to AFL, based
on how AFL stores information between all the executions of the program
being fuzzed:

1. As explained in Section 3.1.3, AFL makes use of a shared memory ar-
ray, which we call shared mem, to store the edge coverage information.
We could use the same array to additionally store information about
timing on top of branch jumps, using a transformation function.

27

2. AFL makes use of a queue to store the (mutated) inputs. Each of
these inputs is stored in the queue using a queue entry structure,
which stores various information about the results obtained after exe-
cuting the program under test with this input, e.g., whether or not an
input triggers new coverage. We can thus create an additional field in
this queue entry structure, which stores a score relating to the exe-
cution time for each entry. Thus, a queue entry will become a tuple
(i, execution info, scorei).

We concluded that the first approach would not be ideal, as the shared
memory code is strongly connected to the instrumentation code, and thus
modifying it would not be straightforward. Moreover, the shared memory
would not be enabled if we do not use the instrumentation - which is the goal,
as we aim for the execution time information to replace the instrumentation
for edge coverage. Therefore, we have decided to proceed with the second
approach. For this, we need to describe the AFL functions that require
modifications, and the respective changes that we have to make to them,
based on the design decisions presented in Section 4.1:

• We need to initialize some global variables and queue entry variables,
such that we can store the (highest) score between program runs as
well as the score for each fuzzing input.

• The function update bitmap score, which checks whether or not a
new path is more favorable - in terms of the bits set in the shared
map - than any of the other existing ones. We need to modify this
function such that a more favorable path means that it results in a
higher timing side-channel score.

• The function cull queue, which ensures that favored queue entries
are selected to get more air time during fuzzing. Similarly, we need
to modify this function such that the selection is achieved using the
timing side-channel score.

• The function calibrate case, which aims to detect problematic in-
puts early on. Because of this, the function also executes the program
being fuzzed with the inputs, and thus we need to ensure that the
execution time is recorded.

• The function save if interesting, which saves a certain input if it
results in an interesting outcome after execution. We need to modify it
such that it additionally takes into account whether the input results
in a new high score or not.

• The function common fuzz stuff, which executes the program being
fuzzed with a certain input. We need to ensure that the execution
time is recorded here.

28

• The function calculate score, a helper function for the mutations
module. Not important how it exactly influences the fuzzing process,
but we need to ensure it also includes the timing side-channel score.

• Finally, we need to create a couple new functions for processing the
scores and saving the high score.

The complete modifications made to AFL are shown in Appendix A.

5.2 SCFuzz using AFL++

First, we looked into creating an SCFuzz implementation using AFL++,
using the changes described in Section 5.1. Because AFL is no longer main-
tained, and because AFL++ offers the same functionality as well as improve-
ments with regard to efficiency and input generation, we decided it would
be a good option for our work. Since we based our approach on DifFuzz,
which is built on top of the Kelinci-WCA fuzzer interface which allows for
AFL to be used on Java programs, modifying AFL++ would not require
much extra effort. However, after spending more than three weeks on this
attempt, we unfortunately had to scratch our work on AFL++ as we failed
to implement all the necessary changes. The functions described in Section
5.1 are more complex than in the older AFL and the code, while technically
more clean, consists of too many files with code that shares functionality
and data. Because of this, we decided to proceed with the older version of
AFL.

5.3 SCFuzz with AFL

Secondly, we looked into creating an SCFuzz implementation using AFL,
using the changes described in Section 5.1. In order to modify AFL using
those changes, we are interested in the file afl-fuzz.c, as this file contains
the main part of the binary fuzzing tool. The exact changes can be found
in Appendix A.

5.3.1 First Attempt: AFL Instrumentation & Execution Time
as a Side-Channel using the High-score Approach

Initially, we have implemented the changes as described in Section 5.1, with-
out using the output of the program under test. This is because we wanted
to see if our current approach of computing and using the execution time
as a score would be enough to find the correct password. Moreover, we also
wanted to keep the instrumentation for the initial attempt, as it would make
it easier to compare it to the baseline results presented in Section 4.4.1 and

29

thus see if our changes have any positive effect. However, after implement-
ing our changes, we ran the fuzzer for about 15 minutes and arrived at the
following conclusions:

• Since we are using nanosecond precision, there is a lot of noise and
thus there are too many new high scores found.

• While the goal of the fuzzer is to maximize the execution time, as
this will technically lead to the correct password being found, without
additional information this approach does not seem feasible.

Based on these findings, the next step was to use the return codes of the
program as well as add a variance threshold such that the number of different
execution times is reduced.

5.3.2 Second Attempt: AFL Instrumentation & Execution
Time as a Side-Channel & Response Codes as a Pseudo-
Timing Side-Channel using a High-Score Approach

Our next option was to attempt to guide the fuzzer using the return values
of the password checker in addition to the execution time values. As can
be seen from Code 4.1, depending on the conditional branch being reached,
there are different return values being returned. Since these return values
are also being implemented in incremental order, with the highest return
value, e.g., return value 400, representing that the correct password has
been given as input, our idea was to guide the fuzzer by only keeping inputs
that result in a higher return value in combination with our current imple-
mentation of the score.

Additionally, we also added a threshold for the execution time, such that
only those new execution times that exceed this threshold are going to be
added to the queue by the fuzzer. In other words, the score value for a
certain input will be kept if and only if score ≥ high score + threshold. We
have done this in order to mitigate possible minor differences in execution
time when certain inputs are used, but are not directly related to the amount
of characters that have been guessed correctly, e.g., small differences when
the password is being read from the file. This is in addition to what we
have already done in the vulnerable C program itself to tackle this issues,
as explained in Section 4.4.

The combination of using execution time and response code results has re-
sulted in our fuzzer to successfully find passwords shorter than 5 characters.
The crash represents the fact the the correct password has been found, which
is a result of the raise(SIGSEV) call at the end of the program, as shown
in Code 4.1. However, for longer passwords, our fuzzer was again not able
to find the correct password after 15 minutes.

30

In order to discover where does the problem exactly arise from, we have also
tried using the following changes:

• In the previous attempts, we have been measuring the execution time
of the program under test around the run target call in the fuzzer.
However, there are still additional operations being done outside of
executing the program under test in run target, which can add noise.
Therefore, we have tried to measure the execution time of the program
being fuzzed as close as possible to the execve() call in the fuzzer.

• In the previous attempts, each time the password contained a wrong
character, we were returning the value 3 regardless of the index of the
wrong character. Therefore, in a different attempt, we have returned
the value i + 4 on line 46 of Code 4.1, such that we can guide our
fuzzer to find the correct password character by character.

• Finally, we have also attempted to add a sleep call after each correct
character in the password, with a high value, e.g., 1 second. In this
way, we not only try to mitigate the noise that we have mentioned, but
also again try and guide the fuzzer to find the correct password char-
acter by character by ensuring bigger timing differences if a character
check turns out successful.

Unfortunately, even with the extra changes we have presented above, we did
not manage to get our fuzzer to find passwords longer than or consisting of
5 characters.

5.4 Conclusions

The main conclusion that we can derive from our attempts at creating our
initial implementation of SCFuzz using AFL++ and AFL is that we were not
successful in modifying either AFL++ or AFL in order to guide the fuzzing
process using the execution time of the program under test toward edge-
coverage or toward find the correct password for a vulnerable C program.
As we have described in this chapter, we have made various attempts at
creating this version of SCFuzz, however we did not manage to have our
fuzzer find passwords longer than or consisting of 5 characters, regardless of
how much (pseduo-)side-channel information or fine-tuning we have used to
guide the fuzzer. Our guess is that either due to the random mutations which
AFL applies to the inputs or because AFL is blind to what the execution
time values and the return code values are actually supposed to represent,
it is not possible to add side-channel information to AFL without going
much deeper into its functionality. However, as mentioned, this is just a
hypothesis that we have not explored further, as this was not the main goal
of our thesis.

31

Chapter 6

SCFuzzLibAFL

Since our attempts to modify AFL and AFL++ have failed, as discussed
in Chapter 5, our second implementation of SCFuzz uses LibAFL, a library
containing various fuzzer modules. LibAFL makes the process of creating
a fuzzer from scratch more modular and less tedious, as we described in
Section 3.1.4. Thus, we can simply pick the components and features we
are interested in, and then incrementally add them together. The available
components are again described in short in Section 3.1.4. Since LibAFL
already has the basic features that our fuzzer implementation requires, in-
cluding modules that allow us to include execution time as a side channel,
we hope that the implementation process will be rather straightforward.

In Section 6.1, we offer an overview of the LibAFL modules and the respec-
tive features that we have used in our implementation. Section 6.2 presents
two versions of SCFuzz using LibAFL, applied on a vulnerable password-
checking program, and the respective results. The first version uses return
codes as a pseudo-timing side-channel, similar to what we have presented
in Section 5.3.2. The second version uses execution time as side-channel
information, calculating the timing side-channel score using the high-score
approach, as presented in Section 4.2. None of these versions use an instru-
mentation mechanism for analyzing the edge coverage. Section 6.3 summa-
rizes the main takeaways from the implementation and analysis process.

6.1 Overview of Implementation

Due to the modular design of LibAFL, the process of creating a fuzzer us-
ing LibAFL is an incremental process. Therefore, first we need to make
decisions regarding the modules and features we want to use in our fuzzer.
We offer an overview of the selected modules and features in the form of a
bullet point list. The selection has been made by following the design pro-
cess decisions presented in Section 4.5, and by following the short tutorial

32

which can be found in the LibAFL book [3]. Please note that the most im-
portant modules are the Observer, Feedback and Objective Feedback,
however we also briefly explain the other modules necessary for creating a
fully working fuzzer. Moreover, some of these modules are part of the core
concepts explained in Section 3.1.4, and thus we only mention the features
we are using in our fuzzer here.

• State: The State is simply a container of the data that changes during
fuzzing. In our case, the state contains:

1. Random Number Generator

2. In-Memory Corpus: Stores the test cases to be used for fuzzing
in memory.

3. On-Disk Corpus: Stores the test cases that result in a “solution”
(as defined by us using the Feedback module) on the disk.

• EventManager: The EventManager keeps track of certain events
that are triggered during the fuzzing process, such as adding a new test
case to the Corpus. For our purposes, the SimpleMonitor is enough.

• Fuzzer: We also need a Fuzzer instance, which alters the State. One
of the actions that is being performed is transferring test cases from
the Corpus to the Fuzzer. This is done using a simple QueueScheduler,
which uses a FIFO queue.

• Executor: For our fuzzer implementation, we can use an InProces-
sExecutor, as we do not require a forking functionality.

• Generator: In this instance, we can use a simple RandPrintables-
Generator which generates a string of printable bytes.

• Observer: For our implementations, we use a StdMapObserver and
a TimeObserver. The former makes use of a map to track the cov-
ered elements of the program under test, and the latter records the
execution time of a program run.

• Feedback: In our case, we make use of the MaxMapFeedback, which
rates a certain input as interesting if there is a value in the Observer’s
map that is greater than the maximum value registered so far for the
same entry, and our custom MaxTimeFeeback, which is explained in
Section 6.2.2.

• Objective Feedback: The Objective Feedback is similar to the Feed-
back module, however its goal is to decide if a certain test case is a
“solution”. In the case of SCFuzzLibAFL, we first make use of a Crash-
Feedback, since in our initial implementations we make use of a white-
box approach and thus can change the program under test such that

33

PASSWORD MAX BRUTE FORCE TIME

mysec instantly

mysecure 1 minute, 40 seconds

mysecurepass 1 year, 5 months

mysecurepassword 667090 years, 4 months

mysecurepassword123 11724780267 years, 6 days

Table 6.1: Total time to find the correct password when using a brute force
approach. The left column shows the password we are trying to find.

Please note that the number in the second column represents amount of
time to exhaust every single combination, at a speed of 2071.5

MH(megahashes)/s. Realistically, we should find the password much
sooner as you have about 50% chance to encounter the correct password

after exhausting just 50% of possible combinations, on average

it crashes when the secret data, e.g. the password, is found by the
fuzzer.

• Stages: For our purposes, we use MutationalStage, which implements
AFL’s havoc mutator, and executes the program several times in a
row using these mutated inputs.

Finally, the fuzzer requires a harness, or in other words, the program that
is going to be fuzzed.

6.2 Fuzzing a Password-Checking Program with a
Timing Leak

Following the same reasoning as described in Section 4.1, we make use of a
password checking program which contains a timing vulnerability. For ease
of implementation, this time we will create a Rust version (as LibAFL is
written in Rust), since we can simply hard-code the harness into the fuzzer
itself. However, with some additional wrappers we can fuzz programs in
any programming language. The Rust version of the C password checking
program shown in Code 4.4 can be seen in Code 6.1.

34

1 const CORRECT_PASSWORD: &str = "mysecurepassword123"; // Change this to your desired

password↪

2

3 fn check_password(entered_password: &str) -> isize {

4 let correct_password_chars = CORRECT_PASSWORD.chars();

5 let entered_password_chars = entered_password.chars();

6

7 if entered_password.len() != CORRECT_PASSWORD.len() {

8 return -1;

9 }

10

11 for (index, (c1, c2)) in

correct_password_chars.zip(entered_password_chars).enumerate() {↪

12 if c1 != c2 {

13 return index as isize;

14 }

15 }

16

17 return 100;

18 }

19

20 fn main() {

21 println!("Please enter your password:");

22

23 let mut password = String::new();

24 std::io::stdin()

25 .read_line(&mut password)

26 .expect("Failed to read line");

27

28 let result = check_password(&password.trim());

29

30 if result >= 100 {

31 panic!("Correct password was {}", password);

32 }

33 }

Code 6.1: Password Checker with Timing Leak - Rust - Version 1

6.2.1 First Attempt: Response Codes as a Pseudo-Timing
Side-Channel using a High-Score Approach

Similarly to SCFuzzAFL, we are initially assuming a white-box approach.
Our first attempt at implementing SCFuzzLibAFL makes use of response
codes to guide the fuzzing process into finding the correct password, with
the highest value for a response code, e.g., value 100, representing that the
correct password has been given as input, as explained in Section 5.3.2.
Moreover, the program crashes, or panics, when the correct password is
found, such that this input can be easily recorded by the fuzzer. No instru-
mentation for analyzing edge-coverage is used in this implementation. As
explained before, in this approach we can interpret the response codes as
being a pseudo-timing side-channel. The rest of the design process decisions
are the same as presented in Section 4.5.

35

Recording the response code values is done by manually creating a small
shared map, which is used by the StdMapObserver, such that one position
in the map is attributed to one correct character in the password. The map
is initialized with zeros. When an input with that character is found, the
value at that position is changed to 1. Using the MaxMapFeedback, we are
trying to maximize the number of consecutive positions in the map that
have a value of 1. We illustrate this behavior in Figure 6.1. This version
of SCFuzzLibAFL can be found in Appendix B. The system setup is given
in Table 4.1 and the results of this implementation can be found in Table
6.2, which shows the amount of time it took the fuzzer to find the correct
password.

Figure 6.1: The modifications done to the shared map when using the
MaxMapFeedback module for the correct password password

As can be seen, using response codes as a pseudo-timing side-channel is
successful, as SCFuzzLibAFL is able to find the correct password in 26 out of
30 fuzzing runs, with variable password lengths and using both letters and
digits. Moreover, a longer password seems to result in a longer fuzzing time
in most cases. Compared to the baseline results presented in Section 4.4.1,
we can see that, in general, this version of SCFuzzLibAFL is more efficient
than the unmodified version of AFL - as it can find passwords that are
much longer, offers more concrete results, and whether or not an attempt is
successful is not influenced by the types of characters used in the password.
Finally, we can also see that, in comparison to a brute force approach, this
version of SCFuzzLibAFL is more efficient in finding the correct password,
especially for higher lengths, as seen in Table 6.2 and Table 6.1. Finally,
this version of SCFuzzLibAFL is not actively fuzzing towards increasing edge-

36

PASSWORD ATTEMPT #1 TIME ATTEMPT #2 TIME ATTEMPT #3 TIME

mysec 1 min 13 sec 2 min 1 sec 59 sec

mysecure 2 min 36 sec 3 min 57 sec 4 min

mysecurepass 20 min 46 sec 1 h (!) 10 min 22 sec

mysecurepassword 5 min 45 sec 19 min 15 sec 1 h (!)

mysecurepassword123 40 min 21 sec 1 h (!) 1 h (!)

ATTEMPT #4 TIME ATTEMPT #5 TIME AVERAGE TIME

1 min 47 sec 2 min 13 sec 1 min 38 sec

1 min 59 sec 3 min 20 sec 3 min 10 sec

12 min 36 sec 13 min 1 sec 14 min 11 sec

25 min 47 sec 29 min 15 sec 20 min

50 min 21 sec 49 min 5 sec 46 min 35 sec

Table 6.2: Total time to find the correct password when using
SCFuzzLibAFL with response codes on the vulnerable password checking
program. The first column shows the password we are trying to find, and
the other six columns show how long it took SCFuzzLibAFL to find that
password as well as the average time for the five attempts, respectively.

The symbol (!) means that the fuzzing attempt was unsuccessful in finding
the correct password, and the average time does not include the

unsuccessful attempts

coverage, but it achieves this as a side-effect of finding the correct password,
e.g., because of how we have programmed the password checker, finding the
correct password also means that complete edge-coverage is achieved, as was
explained in more details for the C version in Section 4.4.

6.2.2 Second Attempt: Execution Time as a Side-Channel
using a High-Score Approach

For our second attempt at implementing SCFuzzLibAFL, we want to use the
actual execution time of the target as side-channel information, instead of
the response codes. Similarly to the first attempt, we are not using instru-
mentation for analyzing edge-coverage, and the design process decisions are
the same as presented in Section 4.5.

For this implementation, we are using a TimeObserver, which records the
execution time of the target. In LibAFL, there is also a TimeFeedback, how-
ever, it is not capable of marking inputs as interesting since there are various
ways in which the execution time of a program can be interesting. There-
fore, we have created our own MaxTimeFeedback, which simply implements
the high score approach of our timing side-channel score from Section 4.2.

37

PASSWORD LENGTH EXECUTION TIME

pas (correct) 3 3000 ms

pa 2 2000 ms

pabcdefg 8 2180 ms

pabcdefghijkl 8 2370 ms

Table 6.3: Behavior of SCFuzzLibAFL with regard to execution time when
using the high-score approach on the Rust password checking program shown
in Code 6.1. Please note that this is an illustrative example, and not the
actual results taken during a fuzzing run of SCFuzzLibAFL.

The changes are minimal, as we simply need to associate the high-score with
the input that caused the high score, and LibAFL will know to keep this
input for further fuzzing. The custom MaxTimeFeedback module is shown
in Appendix B.

The idea behind this high-score approach is to simulate, and thus replace,
the maximization of a shared map using response codes, as we presented
in Section 6.2.1. Therefore, our expectations were that this version would
result in the same behavior, or even a more efficient and fined-grained way
to find the correct password, with stronger correlations between password
length and fuzzing time. However, this was not the case. In fact, this im-
plementation performs worse than the unmodified version of AFL or the
version of SCFuzzLibAFL using return codes, as it could only find passwords
up to 4 characters and only containing literals. And even in this case, the
fuzzing time required is higher than 45 minutes.

We have further tried to optimize the fuzzing by changing the precision
with which the execution time is measured, attempting fuzzing runs us-
ing seconds, milliseconds, microseconds and nanoseconds for the measuring.
Moreover, we also attempted to force the fuzzer to only try inputs that con-
tain ASCII characters, expecting that this will improve the results, but this
was also unsuccessful.

After some analysis, we discovered that during the mutation process, SC-
Fuzz LibAFL still attempts passwords (lengths) at random, even after forcing
the fuzzer to only use inputs that contain ASCII characters, or after us-
ing the first (few) characters of the correct password for the initial input
generation. For the first version of the Rust password checking program
specifically, as shown in Code 6.1, it seems that computing the password
length on line 7 causes the execution time to vary enough to cause a new
execution time value, regardless of the precision being used. This means
that, even if the correct password is only 3 characters long, if SCFuzzLibAFL

38

tries a 20 characters password or longer, this will result in a new execution
time, which is shorter than the execution time for the correct password.
This confuses the fuzzer and causes it to fuzz wrong inputs early in the
fuzzing process. We illustrate this with the example in Table 6.3, where an
execution of the password checking program with the correct password takes
3000 ms, however an execution with a longer, and wrong, password takes
less time. Thus, since we use the high-score approach, it is more likely that
the fuzzer will keep mutating the longer inputs, making the input with the
correct password much harder to reach.

In order to mitigate this behavior, we had to make some changes to the
Rust vulnerable password checking program, in order to minimize code that
is dependent on computing the length of the password being used as input.
Moreover, we have added a sleep statement for a duration of 1 second after
each character, to ensure bigger time differences if a character check turns
out sucessful, similarly to what we have done in Section 5.3.2. The second
version of the Rust vulnerable password checking program is seen in Code
6.2.

1 let CORRECT_PASSWORD = b"mysecurepassword123"; // Change this to your desired

password↪

2

3 fn check_password(entered_password: &[u8]) -> isize {

4 let mut i = 0;

5

6 for _ in buf.iter().zip(CORRECT_PASSWORD).take_while(|(b, c)| b == c) {

7 thread::sleep(Duration::from_millis(1000));

8 i += 1;

9 }

10

11 if i == CORRECT_PASSWORD.len() {

12 panic!("Correct password was {}", password);

13 }

14 }

Code 6.2: Password Checker with Timing Leak - Rust - Version 2

In addition, with regards to the code of SCFuzzLibAFL itself, we have kept
the changes that force the fuzzer to only generate inputs that contain ASCII
characters, as well as add a fixed threshold for the execution time. Thus, only
those new execution times that exceed current high score + threshold

are going to be added to the queue by the fuzzer. This threshold ap-
proach was also attempted and explained in Section 5.3.2. These changes
to SCFuzzLibAFL can be seen in Appendix B. The system setup is given in
Table 4.1 and the results of this implementation can be found in Table 6.4,
which shows the amount of time it took the fuzzer to find the correct pass-
word.

39

PASSWORD ATTEMPT #1 TIME ATTEMPT #2 TIME ATTEMPT #3 TIME

my 1 min 2 sec 45 sec 1 min 57 sec

mys 3 min 45 sec 1 min 8 sec 2 min 59 sec

myse 30 min (!) 15 min 23 sec 30 min (!)

mysec 5 min 4 sec 30 min (!) 30 min (!)

mysecu 30 min (!) 9 min 37 sec 30 min (!)

mysecu1 30 min (!) 30 min (!) 29 min 28 sec

ATTEMPT #4 TIME ATTEMPT #5 TIME AVERAGE TIME

30 sec 52 sec 1 min 1 sec

3 min 2 sec 2 min 20 sec 2 min 12 sec

10 min 34 sec 17 min 43 sec 14 min 33 sec

20 min 49 sec 19 min 7 sec 15 min

25 min 50 sec 30 min (!) 17 min 43 sec

30 min (!) 30 min (!) 29 min 28 sec

Table 6.4: Total time to find the correct password when using SCFuzzLibAFL

with execution time as a side-channel on the vulnerable password checking

program. The first column shows the password we are trying to find, and the

other six columns show how long it took SCFuzzLibAFL to find that password as

well as the average time for the five attempts, respectively. The symbol (!) means

that the fuzzing attempt was unsuccessful in finding the correct password, and the

average time does not include the unusccesfull attempts

As can be seen, using the execution-time as a side-channel, together with
the changes we have made for fine-tuning our implementation, proves to be
somewhat successful. This version of SCFuzzLibAFL was able to find the cor-
rect password in 19 out of 30 fuzzing runs, with variable password lengths
and using both letters and digits. However, similarly to the baseline results
shown in Section 4.4.1, the execution times vary quite a lot between fuzzing
runs, and longer passwords do not necessarily take longer to be found. At the
same time, the average times for all passwords seem to be better correlated
to the password length. Moreover, we can see that, in general, this version
of SCFuzzLibAFL is not more efficient than the unmodified version of AFL
(as seen in Table 4.2), but does not seem to be influenced by the types of
characters used in the password as it was able to find the password mysecu1

during fuzzing attempt 3. Compared to the results obtained SCFuzzLibAFL

with return codes, as seen in Table 6.2, this version is again not more ef-
ficient, as it also takes a much longer time to find passwords shorter than
what SCFuzzLibAFL with return codes was able to find. Finally, similarly as
before, this version of SCFuzzLibAFL is not actively fuzzing towards increas-
ing edge-coverage, but it achieves this as a side-effect of finding the correct
password.

40

6.3 Conclusions

The first conclusion that we can derive from our work on creating SCFuzz

LibAFL is that, indeed, LibAFL is much more straightforward to use and more
flexible with regards to the functionality that can be carried out. Moreover,
since it also allows fuzzing of not just Rust, but also other programming
languages, we believe LibAFL should be one of the go-to options in fuzzing
research.

We can also conclude that we were somewhat successful in creating a fuzzer
that uses timing side-channel information during the fuzzing process. Our
first version of SCFuzzLibAFL, which uses response codes as a pseudo-timing
side-channel and a high-score approach for the side-channel score, is able to
find the correct password and is generally more efficient in doing so than an
unmodified version of AFL or a brute-force approach. However, it does not
make any attempts at code coverage, and it cannot be applied in many real
world scenarios, as this version requires a lot of fine tuning of the target for
the fuzzing to be successful.

Finally, we can also conclude that we were somewhat successful in creat-
ing the second version of SCFuzzLibAFL, which uses execution time as side-
channel information and a high-score approach for the side-channel score,
even though the results are less clear. This version is able to find the correct
password in some cases, and in general longer passwords do take longer to
be discovered, however there are fuzzing attempts where SCFuzzLibAFL was
not able to find the correct password after 30 minutes or more. The results
also do not confirm that our implementation is necessarily more efficient
than an unmodified version of AFL or a brute force approach. Finally, this
version does not make any attempts at code coverage either, and it can only
be applied on a small subset of programs, as it assumes that the interesting
outcome is related to longer execution times, and because it requires a lot
of fine tuning of the target for the fuzzing to be successful.

41

Chapter 7

Future Work

Throughout this thesis, we have presented various attempts at creating a
fuzzer that uses side-channel information to guide the fuzzing process toward
finding the secret data of a program or toward achieving edge-coverage. Due
to implementation difficulties and time constraints, we have only focused
on creating a fuzzer that uses execution time as side-channel information, a
high-score approach for computing the side-channel score and which does not
attempt to use this side-channel information for improving edge-coverage.
Therefore, there is still work to be performed on this topic.

Firstly, as we have presented in Section 4.2, we have also thought of a second
approach for computing the side-channel score, which is the unique descen-
dants approach. If this approach can be successfully implemented, it might
allow for the fuzzer to be more generalizible, e.g., allow for the fuzzer to be
applied on programs that do not fit the assumption that a higher execution
time results in interesting behavior. Moreover, it might solve some of the
issues we have encountered with our current implementation, such as the
fact that wrong passwords which are longer than the correct password can
confuse the fuzzer, and also allow the fuzzer to use side-channel information
for edge-coverage.

Secondly, as we have previously mentioned in Chapter 1, one of our original
goals was to apply the final version of SCFuzzLibAFL on smart card devices.
As smart card devices do not allow for instrumentation to be inserted in the
code running on them, most of the well-known fuzzer cannot be used. Thus,
we believe applying a fuzzer that uses side-channel information during the
fuzzing process on such devices is an interesting topic to research further,
since it could potentially allow for a black-box analysis of commercial im-
plementations of smart cards applets, for example.

42

Finally, throughout this thesis, we have only focused on implementing ex-
ecution time of a program as side-channel information during the fuzzing
process. However, there are other side-channels that could potentially be
used and could offer interesting results. For example, if power consumption
can be used successfully in the fuzzing process, it could offer interesting
results especially when used on hardware devices, such as smart cards.

43

Chapter 8

Conclusion

In our thesis we have presented several attempts at creating a fuzzer, which
we call SCFuzz, that aims to use timing side-channel information for guiding
the fuzzing process toward improving code coverage and toward finding the
secret data, such as the correct password for a password checking program.
We described the main decisions made in the design process, the program we
have used to test the fuzzer, and the side-channel information being used.
Moreover, we have detailed the different versions of SCFuzz and their re-
spective results.

The first implementation we have explained in Chapter 5, SCFuzzAFL, con-
sists of AFL as the underlying fuzzer and uses its instrumentation that
analyzes edge-coverage, in addition to the changes for integrating timing
side-channel information. This attempt was unsuccessful, as SCFuzzAFL

was not able to find the correct password used by a password checking pro-
gram with timing leakage. We concluded that this is most likely the case
because of the random mutations which AFL applies to the inputs.

The second implementation we have explained in Chapter 6, SCFuzzLibAFL

makes use of the fuzzing library LibAFL, and combines various modules into
a working fuzzer, and does not use instrumentation for edge-coverage. The
first conclusion regarding this implementation is that LibAFL is a better
option for creating a new fuzzer, as it is better documented, much easier to
use, and more flexible with regards to the functionality that can be imple-
mented. Secondly, we were somewhat successful in creating two versions of
SCFuzzLibAFL that use a (pseudo-)timing side-channel for finding the correct
password used by a password checking program with timing leakage. The
first version, as described in Section 6.2.1, which uses response codes as a
pseudo-timing side-channel and a high-score approach for the side-channel
score, was able to find the correct password in most attempts, while also
being more efficient than an unmodified version of AFL and a brute-force

44

approach. The second version, as described in Section 6.2.2, which uses
execution time as side-channel information and a high-score approach for
the side-channel score, approach explained in Section 4.2, was able to find
the correct password in slightly more than half of the fuzzing attempts.
However, this applies for shorter passwords than the version using response
codes, and the results show that this version is not necessarily more efficient
than an unmodified version of AFL or a brute-force approach. Moreover,
both versions of SCFuzzLibAFL only work for a small subset of programs, as
they required a lot of fine tuning of the target for the fuzzing to be suc-
cessful, and thus take a white-box approach. These versions also assume
that a higher side-channel score results in an interesting outcome, such as
finding the correct password. However, it might not always be the case that
interesting behavior causes higher execution times. We were not successful
in obtaining any clear results regarding the effects on edge-coverage using
SCFuzzLibAFL.

Finally, while we were not completely successful in using a (timing) side-
channel in the fuzzing process, we believe these preliminary results offer a
good basis for future work. For example, we mention a second approach that
could be used for processing the side-channel score and could offer better
results, that we did not attempt to implement during our work. Moreover,
there are other side-channels, such as power consumption, that could be
used during the fuzzing process. Finally, as was our original goal for this
thesis, applying a fuzzer that uses side-channel information on a hardware
device, such as smart cards, could also have interesting results.

45

Bibliography

[1] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik,
and Thorsten Holz. REDQUEEN: Fuzzing with input-to-state corre-
spondence. In Proceedings 2019 Network and Distributed System Secu-
rity Symposium. Internet Society, 2019.

[2] Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jianchao Guo, and
Wenqian Liu. A systematic review of fuzzing techniques. Computers &
Security, 75:118–137, 2018.

[3] Andrea Fioraldi and Maier Dominik. “The LibAFL Fuzzing Library”.
https://aflplus.plus/libafl-book/libafl.html.

[4] Andrea Fioraldi and Maier Dominik. “The LibAFL Fuzzing Library
Documentation”. https://docs.rs/libafl/latest/libafl/index.

html.

[5] Andrea Fioraldi, Dominik Christian Maier, Dongjia Zhang, and Davide
Balzarotti. Libafl: A framework to build modular and reusable fuzzers.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’22, page 1051–1065, New York, NY,
USA, 2022. Association for Computing Machinery.

[6] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Ma-
chine learning for input fuzzing. In 2017 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pages
50–59, 2017.

[7] Google. “AFL GitHub Repository”. https://github.com/google/

AFL.

[8] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Ex-
ploiting speculative execution. In 40th IEEE Symposium on Security
and Privacy (S&P’19), 2019.

46

https://aflplus.plus/libafl-book/libafl.html
https://docs.rs/libafl/latest/libafl/index.html
https://docs.rs/libafl/latest/libafl/index.html
https://github.com/google/AFL
https://github.com/google/AFL

[9] Nate Lawson. “Timing attack in Google Keyczar library”.
https://rdist.root.org/2009/05/28/timing-attack-in-google-

keyczar-library/.

[10] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. Cybersecu-
rity, 1(1), jun 2018.

[11] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian
Zhang. Fuzzing: State of the art. IEEE Transactions on Reliability,
67(3):1199–1218, 2018.

[12] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading ker-
nel memory from user space. In 27th USENIX Security Symposium
(USENIX Security 18), 2018.

[13] Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study
of the reliability of unix utilities. Commun. ACM, 33(12):32–44, dec
1990.

[14] Gedriaan Mulder. Step aside! a fuzzy trip down side-channel lane.
Master Thesis, nov 2020.

[15] Shirin Nilizadeh, Yannic Noller, and Corina S. Pasareanu. Diffuzz:
Differential fuzzing for side-channel analysis. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), pages 176–
187, 2019.

[16] Yannic Noller and Saeid Tizpaz-Niari. Qfuzz: Quantitative fuzzing
for side channels. In Proceedings of the 30th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, ISSTA 2021,
page 257–269, New York, NY, USA, 2021. Association for Computing
Machinery.

[17] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. VUzzer: Application-aware evolutionary
fuzzing. In Proceedings 2017 Network and Distributed System Security
Symposium. Internet Society, 2017.

[18] Cheng Wen, Haijun Wang, Yuekang Li, Shengchao Qin, Yang Liu,
Zhiwu Xu, Hongxu Chen, Xiaofei Xie, Geguang Pu, and Ting Liu.
MemLock: Memory Usage Guided Fuzzing, page 765–777. Association
for Computing Machinery, New York, NY, USA, 2020.

[19] Abubakar Zakari, Sai Peck Lee, Khubaib Amjad Alam, and Rodina
Ahmad. Software fault localisation: a systematic mapping study. IET
Software, 13(1):60–74, 2019.

47

https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/

[20] Michal Zalewski. “AFL Technical Paper”. https://lcamtuf.

coredump.cx/afl/technical_details.txt.

48

https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt

Appendix A

SCFuzzAFL

Please Note: There are a few additional, minor modifications that are not
listed here, but can be found on the GitHub repository of this project.

/* SP: Calibration Scores

* START

*/

/* Total calibration score */

static u64 total_score;

/* Highest score / most costly */

static u64 high_score;

/* Lowest score / least costly */

static u64 low_score = 0-1;

/* If X% of highscore, put in queue */

#define KEEP_MORE_COSTLY_PERC 100

/* If X% of lowscore, put in queue */

#define KEEP_LESS_COSTLY_PERC 100

/* Highest return code */

static u8 return_code_high_score;

/* Use the old culling method */

static u8 old_culling = 0;

/* END */

Code A.1: Score Global Variables

struct queue_entry {

u8* fname; /* File name for the test case */

u32 len; /* Input length */

u8 cal_failed, /* Calibration failed? */

trim_done, /* Trimmed? */

was_fuzzed, /* Had any fuzzing done yet? */

passed_det, /* Deterministic stages passed? */

49

has_new_cov, /* Triggers new coverage? */

var_behavior, /* Variable behavior? */

favored, /* Currently favored? */

fs_redundant; /* Marked as redundant in the fs? */

u32 bitmap_size, /* Number of bits set in bitmap */

exec_cksum; /* Checksum of the execution trace */

u64 exec_us, /* Execution time (us) */

handicap, /* Number of queue cycles behind */

depth; /* Path depth */

/* START */

u64 score; /* SP: Score based on cost model */

u8 return_code; /* SP: Password Checker return code */

/* END */

u8* trace_mini; /* Trace bytes, if kept */

u32 tc_ref; /* Trace bytes ref count */

struct queue_entry *next, /* Next element, if any */

next_100; / 100 elements ahead */

};

Code A.2: Score Queue Variables

/* SP: Resource-based Prioritization

* START

*/

enum {

/* 00 */ COST_MODEL_STANDARD,

/* 01 */ COST_MODEL_TIMING,

/* 02 */ COST_MODEL_POWER

};

int costmodel = COST_MODEL_TIMING;

/* END */

/* SP: Cost-model Optimization Strategy

* START

*/

enum {

/* 00 */ MAXIMIZE_COST

};

int coststrategy = MAXIMIZE_COST;

/* END */

/* SP: Password Checker Return Codes

* START

*/

enum {

/* 00 */ LENGTH_HIGHER,

/* 01 */ FILE_ERROR,

50

/* 02 */ LENGTH_MISMATCH,

/* 03 */ WRONG_CHARACTER,

/* 04 */ CORRECT_PASSWORD

};

/* END */

Code A.3: Additional Fuzzing Options and Variables

static void update_bitmap_score(struct queue_entry* q) {

u32 i;

/* SP: Use score field

* u64 fav_factor = q->exec_us * q->len;

*/

/* For every byte set in trace_bits[], see if there is a previous winner,

and how it compares to us. */

for (i = 0; i < MAP_SIZE; i++)

if (trace_bits[i]) {

if (top_rated[i]) {

/* Faster-executing or smaller test cases are favored. */

/* SP: Scoring based on resource use

* START

* if (fav_factor > top_rated[i]->exec_us * top_rated[i]->len)

continue;↪

*/

if (q->score <= top_rated[i]->score && q->return_code <=

top_rated[i]->return_code) continue;↪

/* END */

/* Looks like we're going to win. Decrease ref count for the

previous winner, discard its trace_bits[] if necessary. */

if (!--top_rated[i]->tc_ref) {

ck_free(top_rated[i]->trace_mini);

top_rated[i]->trace_mini = 0;

}

}

/* Insert ourselves as the new winner. */

top_rated[i] = q;

q->tc_ref++;

if (!q->trace_mini) {

q->trace_mini = ck_alloc(MAP_SIZE >> 3);

minimize_bits(q->trace_mini, trace_bits);

51

}

score_changed = 1;

}

}

Code A.4: Modified Bitmap Function

/* SP: New method of culling the queue */

static void cull_queue(void) {

struct queue_entry* q;

u64 top_scorer_1, top_scorer_2, top_scorer_3;

top_scorer_1 = top_scorer_2 = top_scorer_3 = 0;

u8 top_return_code = 0;

if (old_culling) {

cull_queue_old();

return;

}

if (dumb_mode || !score_changed) return;

score_changed = 0;

queued_favored = 0;

pending_favored = 0;

q = queue;

while (q) {

q->favored = 0;

if (q->score > top_scorer_1) {

top_scorer_3 = top_scorer_2;

top_scorer_2 = top_scorer_1;

top_scorer_1 = q->score;

} else if (q->score > top_scorer_2) {

top_scorer_3 = top_scorer_2;

top_scorer_2 = q->score;

} else if (q->score > top_scorer_3) {

top_scorer_3 = q->score;

}

q = q->next;

}

q = queue;

while(q) {

if (q->return_code > top_return_code)

52

top_return_code = q->return_code;

q = q->next;

}

q = queue;

while (q) {

if (q->score >= top_scorer_3 || q->return_code >= top_return_code) {

q->favored = 1;

queued_favored++;

if (!q->was_fuzzed) pending_favored++;

}

q = q->next;

}

}

Code A.5: Modified Queue Culling Function

EXP_ST void setup_shm(void) {

u8* shm_str;

if (!in_bitmap) memset(virgin_bits, 255, MAP_SIZE);

memset(virgin_tmout, 255, MAP_SIZE);

memset(virgin_crash, 255, MAP_SIZE);

/* SP: Allocate extra 2*8 bytes for resource results + 1 byte for return

code results↪

* START

* shm_id = shmget(IPC_PRIVATE, MAP_SIZE, IPC_CREAT | IPC_EXCL | 0600);

*/

shm_id = shmget(IPC_PRIVATE, MAP_SIZE + 17, IPC_CREAT | IPC_EXCL | 0600);

/* END */

if (shm_id < 0) PFATAL("shmget() failed");

atexit(remove_shm);

shm_str = alloc_printf("%d", shm_id);

/* If somebody is asking us to fuzz instrumented binaries in dumb mode,

we don't want them to detect instrumentation, since we won't be sending

fork server commands. This should be replaced with better auto-detection

later on, perhaps? */

↪

↪

if (!dumb_mode) setenv(SHM_ENV_VAR, shm_str, 1);

ck_free(shm_str);

trace_bits = shmat(shm_id, NULL, 0);

53

if (!trace_bits) PFATAL("shmat() failed");

}

Code A.6: Additional Shared Memory Allocation

/* SP: Variable for storing the return code of a fuzzing run

* START

*/

u8 return_code;

/* END */

.........

/* SP: Allocate extra 2*8 bytes for resource results + 1 byte for return

code results↪

* START

* memset(trace_bits, 0, MAP_SIZE);

*/

memset(trace_bits, 0, MAP_SIZE + 17);

/* END */

.........

/* SP: Retrieve return code value

* START

*/

return_code = WEXITSTATUS(status);

memcpy(&trace_bits[MAP_SIZE + 16], &return_code, 1);

/* END */

Code A.7: Modifications to run target() function

/* SP: Variables for storing the execution time of a fuzzing run

* START

*/

u64 start_entry_time, stop_entry_time, entry_execution_time;

/* END */

.........

/* SP: Retrieving the start and end time of the fuzzing run

* START

*/

start_entry_time = get_cur_time_us();

fault = run_target(argv, use_tmout);

stop_entry_time = get_cur_time_us();

/* END */

/* SP: Computing the exectuong time of the current input and storing in the

shared memory↪

54

* START

*/

entry_execution_time = stop_entry_time - start_entry_time;

memcpy(&trace_bits[MAP_SIZE], &entry_execution_time, 8);

/* END */

.........

/* SP: Copy resource use here as well

* START

*/

u64 time, memory;

memcpy(&time, &trace_bits[MAP_SIZE], 8);

memcpy(&memory, &trace_bits[MAP_SIZE + 8], 8);

if (costmodel == COST_MODEL_TIMING) {

q->score = time;

} else if (costmodel == COST_MODEL_MEMORY) {

q->score = memory;

} else {

q->score = 0-(q->exec_us * q->len);

}

total_score += q->score;

if (q->score > high_score)

high_score = q->score;

/* END */

Code A.8: Modifications to calibrate case() function

/* SP: Add suffix for highscore

* START

*/

if (new_high_score) {

strcat(ret, ",high_score");

}

/* END */

/* SP: Add suffix for return code highscore

* START

*/

if (new_return_code_high_score) {

if (return_code_high_score == LENGTH_HIGHER)

strcat(ret, ",length_higher");

else if (return_code_high_score == FILE_ERROR)

strcat(ret, ",file_error");

else if (return_code_high_score == LENGTH_MISMATCH)

strcat(ret, ",length_mismatch");

else if (return_code_high_score == WRONG_CHARACTER)

strcat(ret, ",wrong_character");

else if (return_code_high_score == CORRECT_PASSWORD)

strcat(ret, ",correct_password");

}

55

/* END */

Code A.9: Modification to describe op() function

/* SP: Check if this input leads to a (much) more costly path

* START

*/

static u8 more_costly_than_highscore() {

u64 time, memory;

memcpy(&time, &trace_bits[MAP_SIZE], 8);

memcpy(&memory, &trace_bits[MAP_SIZE + 8], 8);

if (costmodel == COST_MODEL_TIMING && time > ((high_score *

KEEP_MORE_COSTLY_PERC)/100)) {↪

return 1;

} else if (costmodel == COST_MODEL_MEMORY && memory > ((high_score *

KEEP_MORE_COSTLY_PERC)/100)) {↪

return 1;

}

return 0;

}

/* END */

/* SP: Set lowscore if needed

* START

*/

static void set_lowscore_if_needed() {

u64 time, memory, instr_cost, user_defined_cost;

memcpy(&time, &trace_bits[MAP_SIZE], 8);

memcpy(&memory, &trace_bits[MAP_SIZE + 8], 8);

if (costmodel == COST_MODEL_TIMING && time < low_score) {

low_score = time;

} else if (costmodel == COST_MODEL_MEMORY && memory < low_score) {

low_score = memory;

}

}

/* END */

Code A.10: Score Processing Functions

/* SP: True if the found score is a new highscore and

* the new return code is higher

* START

*/

u8 new_high_score = 0;

u8 return_code, new_return_code_high_score = 0;

/* END */

.........

56

/* SP: Also keep if KEEP_MORE_COSTLY_PERC is more costly than the current

highscore↪

* START

*/

hnb = has_new_bits(virgin_bits);

if (coststrategy == MAXIMIZE_COST) {

new_high_score = more_costly_than_highscore();

} else {

new_high_score = 0;

}

memcpy(&return_code, &trace_bits[MAP_SIZE + 16], 1);

if (return_code > return_code_high_score)

new_return_code_high_score = 1;

else new_return_code_high_score = 0;

/* if (!(hnb = has_new_bits(virgin_bits))) { */

if (!hnb && !new_high_score && !new_return_code_high_score) {

if (crash_mode) total_crashes++;

return 0;

}

/* END */

.........

/* SP: New highscore is treated similarly to increased coverage

* START

*/

if (hnb == 2 || new_high_score > 0 || new_return_code_high_score > 0) {

/* if (hnb == 2) { */

queue_top->has_new_cov = 1;

queued_with_cov++;

}

/* END */

Code A.11: Modifications to save if interesting() function

static void maybe_update_plot_file(double bitmap_cvg, double eps) {

static u32 prev_qp, prev_pf, prev_pnf, prev_ce, prev_md;

static u64 prev_qc, prev_uc, prev_uh;

/* SP: Variables for storing previous low score, previous high score nad

previous highest return code↪

* START

*/

static u64 prev_low, prev_high;

static u8 prev_return_code;

/* END */

if (prev_qp == queued_paths && prev_pf == pending_favored &&

prev_pnf == pending_not_fuzzed && prev_ce == current_entry &&

prev_qc == queue_cycle && prev_uc == unique_crashes &&

57

prev_uh == unique_hangs && prev_md == max_depth &&

/* SP: Add low score, high score and return code

* START

*/

prev_low == low_score && prev_high == high_score

&& prev_return_code == return_code_high_score) return;

/* END */

prev_qp = queued_paths;

prev_pf = pending_favored;

prev_pnf = pending_not_fuzzed;

prev_ce = current_entry;

prev_qc = queue_cycle;

prev_uc = unique_crashes;

prev_uh = unique_hangs;

prev_md = max_depth;

/* SP:

* START

*/

prev_low = low_score;

prev_high = high_score;

prev_return_code = return_code_high_score;

/* END */

/* Fields in the file:

unix_time, cycles_done, cur_path, paths_total, paths_not_fuzzed,

favored_not_fuzzed, unique_crashes, unique_hangs, max_depth,

execs_per_sec, low_score, high_score, return_code */

/* SP:

* START

*/

fprintf(plot_file,

"%llu, %llu, %u, %u, %u, %u, %0.02f%%, %llu, %llu, %u, %0.02f,

%llu, %llu, %u\n",↪

get_cur_time() / 1000, queue_cycle - 1, current_entry,

queued_paths,↪

pending_not_fuzzed, pending_favored, bitmap_cvg, unique_crashes,

unique_hangs, max_depth, eps, low_score, high_score,

return_code_high_score); /* ignore errors */↪

/* END */

fflush(plot_file);

}

Code A.12: Adding the scores to the fuzzer plot file

/* SP: Retrieving the start and end time of the fuzzing run

* START

*/

start_entry_time = get_cur_time_us();

58

fault = run_target(argv, exec_tmout);

stop_entry_time = get_cur_time_us();

/* END */

/* SP: Computing the execution time of the fuzzing run for the current input

and storing in the shared memory↪

* START

*/

entry_execution_time = stop_entry_time - start_entry_time;

memcpy(&trace_bits[MAP_SIZE], &entry_execution_time, 8);

/* END */

Code A.13: Modifications to common fuzz stuff() function

static u32 calculate_score(struct queue_entry* q) {

/* SP: Use score field instead

* START

*/

u32 avg_score = total_score / total_cal_cycles;

/* u32 avg_exec_us = total_cal_us / total_cal_cycles; */

/* END */

u32 avg_bitmap_size = total_bitmap_size / total_bitmap_entries;

u32 perf_score = 100;

/* Adjust score based on execution speed of this path, compared to the

global average. Multiplier ranges from 0.1x to 3x. Fast inputs are

less expensive to fuzz, so we're giving them more air time. */

/* if (q->exec_us * 0.1 > avg_exec_us) perf_score = 10;

else if (q->exec_us * 0.25 > avg_exec_us) perf_score = 25;

else if (q->exec_us * 0.5 > avg_exec_us) perf_score = 50;

else if (q->exec_us * 0.75 > avg_exec_us) perf_score = 75;

else if (q->exec_us * 4 < avg_exec_us) perf_score = 300;

else if (q->exec_us * 3 < avg_exec_us) perf_score = 200;

else if (q->exec_us * 2 < avg_exec_us) perf_score = 150;*/

/* SP: Score based on score field

* START

*/

if (q->score * 0.25 > avg_score) perf_score = 300;

else if (q->score * 0.33 > avg_score) perf_score = 200;

else if (q->score * 0.25 > avg_score) perf_score = 150;

else if (q->score * 1.5 < avg_score) perf_score = 75;

else if (q->score * 2 < avg_score) perf_score = 50;

else if (q->score * 4 < avg_score) perf_score = 25;

else if (q->score * 10 < avg_score) perf_score = 10;

/* END */

.........

Code A.14: Modification to calculate score() function

59

Appendix B

SCFuzzLibAFL

#[cfg(windows)]

use std::ptr::write_volatile;

use std::{path::PathBuf, ptr::write};

#[cfg(feature = "tui")]

use libafl::monitors::tui::{ui::TuiUI, TuiMonitor};

#[cfg(not(feature = "tui"))]

use libafl::monitors::SimpleMonitor;

use libafl::{

corpus::{InMemoryCorpus, OnDiskCorpus},

events::SimpleEventManager,

executors::{inprocess::InProcessExecutor, ExitKind},

feedbacks::{CrashFeedback, MaxMapFeedback},

fuzzer::{Fuzzer, StdFuzzer},

generators::RandPrintablesGenerator,

inputs::{BytesInput, HasTargetBytes},

mutators::scheduled::{havoc_mutations, StdScheduledMutator},

observers::StdMapObserver,

schedulers::QueueScheduler,

stages::mutational::StdMutationalStage,

state::StdState,

};

use libafl_bolts::{current_nanos, rands::StdRand, tuples::tuple_list,

AsSlice};↪

// Coverage map with explicit assignments due to the lack of

instrumentation↪

static mut SIGNALS: [u8; 200] = [0; 200];

static mut SIGNALS_PTR: *mut u8 = unsafe { SIGNALS.as_mut_ptr() };

/// Assign a signal to the signals map

fn signals_set(idx: usize) {

unsafe { write(SIGNALS_PTR.add(idx), 1) };

}

fn main() {

let mut harness = |input: &BytesInput| {

60

let target = input.target_bytes();

let buf = target.as_slice();

const CORRECT_PASSWORD: &str = "mysecurepassword123"; // Change this

to your desired password↪

fn check_password(entered_password: &str) -> isize {

let correct_password_chars = CORRECT_PASSWORD.chars();

let entered_password_chars = entered_password.chars();

if entered_password.len() != CORRECT_PASSWORD.len() {

signals_set(0);

return -1;

}

for (index, (c1, c2)) in

correct_password_chars.zip(entered_password_chars).enumerate() {↪

if c1 != c2 {

signals_set(index + 1);

return index as isize;

}

}

signals_set(100);

return 100;

}

let password = String::from_utf8_lossy(buf);

let result = check_password(&password.trim());

if result >= 100 {

panic!("Correct password was {}", password);

}

ExitKind::Ok

};

// Create an observation channel using the signals map

let observer = unsafe { StdMapObserver::from_mut_ptr("signals",

SIGNALS_PTR, SIGNALS.len()) };↪

// Feedback to rate the interestingness of an input

let mut feedback = MaxMapFeedback::new(&observer);

// A feedback to choose if an input is a solution or not

let mut objective = CrashFeedback::new();

// create a State from scratch

let mut state = StdState::new(

// RNG

StdRand::with_seed(current_nanos()),

// Corpus that will be evolved, we keep it in memory for

performance↪

InMemoryCorpus::new(),

61

// Corpus in which we store solutions (crashes in this example),

// on disk so the user can get them after stopping the fuzzer

OnDiskCorpus::new(PathBuf::from("./crashes")).unwrap(),

&mut feedback,

&mut objective,

)

.unwrap();

// The Monitor trait defines how the fuzzer stats are displayed to the

user↪

let mon = SimpleMonitor::new(|s| println!("{s}"));

// The event manager handles the various events generated during the

fuzzing loop↪

// such as the notification of the addition of a new item to the corpus

let mut mgr = SimpleEventManager::new(mon);

// A queue policy to get testcasess from the corpus

let scheduler = QueueScheduler::new();

// A fuzzer with feedbacks and a corpus scheduler

let mut fuzzer = StdFuzzer::new(scheduler, feedback, objective);

// Create the executor for an in-process function

let mut executor = InProcessExecutor::new(&mut harness,

tuple_list!(observer), &mut fuzzer, &mut state, &mut mgr)↪

.expect("Failed to create the Executor");

// Generator of printable bytearrays of max size 32

let mut generator = RandPrintablesGenerator::new(32);

// Generate 8 initial inputs

state

.generate_initial_inputs(&mut fuzzer, &mut executor, &mut generator,

&mut mgr, 8)↪

.expect("Failed to generate the initial corpus");

// Setup a mutational stage with a basic bytes mutator

let mutator = StdScheduledMutator::new(havoc_mutations());

let mut stages = tuple_list!(StdMutationalStage::new(mutator));

fuzzer

.fuzz_loop(&mut stages, &mut executor, &mut state, &mut mgr)

.expect("Error in the fuzzing loop");

}

Code B.1: SCFuzzLibAFL - Return Values Version

#[cfg(windows)]

use std::ptr::write_volatile;

use std::{path::PathBuf, ptr::write};

use std::thread;

62

use std::time::Duration;

#[cfg(feature = "tui")]

use libafl::monitors::tui::{ui::TuiUI, TuiMonitor};

#[cfg(not(feature = "tui"))]

use libafl::monitors::SimpleMonitor;

use libafl::{

corpus::{InMemoryCorpus, OnDiskCorpus},

events::SimpleEventManager,

executors::{inprocess::InProcessExecutor, ExitKind},

feedbacks::{CrashFeedback, MaxTimeFeedback},

fuzzer::{Fuzzer, StdFuzzer},

generators::RandPrintablesGenerator,

inputs::{BytesInput, HasTargetBytes},

mutators::{string::{StringCategoryRandMutator,

StringSubcategoryRandMutator},↪

scheduled:: StdScheduledMutator,

},

observers:: TimeObserver,

schedulers::QueueScheduler,

stages::{mutational::StdMutationalStage,

string::StringIdentificationStage,

},

state::StdState,

Evaluator,

};

use libafl_bolts::{current_nanos, rands::StdRand, tuples::tuple_list,

AsSlice};↪

fn main() {

let mut harness = |input: &BytesInput| {

let target = input.target_bytes();

let buf = target.as_slice();

let CORRECT_PASSWORD = b"mysecurepassword123"; // Change this to

your desired password↪

let mut i = 0;

for _ in buf.iter().zip(CORRECT_PASSWORD).take_while(|(b, c)| b ==

c) {↪

// signals_set(i);

thread::sleep(Duration::from_millis(1000));

i += 1;

}

if i == CORRECT_PASSWORD.len() {

let password = String::from_utf8_lossy(buf);

panic!("Correct password was {}", password);

}

ExitKind::Ok

};

63

// Create an observation channel using the signals map

let observer = TimeObserver::new("time");

// Feedback to rate the interestingness of an input

let mut feedback = MaxTimeFeedback::with_observer(&observer);

// A feedback to choose if an input is a solution or not

let mut objective = CrashFeedback::new();

// create a State from scratch

let mut state = StdState::new(

// RNG

StdRand::with_seed(current_nanos()),

// Corpus that will be evolved, we keep it in memory for

performance↪

InMemoryCorpus::new(),

// Corpus in which we store solutions (crashes in this example),

// on disk so the user can get them after stopping the fuzzer

OnDiskCorpus::new(PathBuf::from("./crashes")).unwrap(),

&mut feedback,

&mut objective,

)

.unwrap();

// The Monitor trait defines how the fuzzer stats are displayed to the

user↪

let mon = SimpleMonitor::new(|s| println!("{s}"));

// The event manager handles the various events generated during the

fuzzing loop↪

// such as the notification of the addition of a new item to the corpus

let mut mgr = SimpleEventManager::new(mon);

// A queue policy to get testcasess from the corpus

let scheduler = QueueScheduler::new();

// A fuzzer with feedbacks and a corpus scheduler

let mut fuzzer = StdFuzzer::new(scheduler, feedback, objective);

// Create the executor for an in-process function

let mut executor = InProcessExecutor::new(&mut harness,

tuple_list!(observer), &mut fuzzer, &mut state, &mut mgr)↪

.expect("Failed to create the Executor");

// Generate 8 initial inputs

fuzzer

.evaluate_input(

&mut state,

&mut executor,

&mut mgr,

BytesInput::new(vec![b'm']),

)

.unwrap();

64

// Setup a mutational stage with a basic bytes mutator

let mutator = StdScheduledMutator::new(tuple_list!(

StringCategoryRandMutator,

StringSubcategoryRandMutator,

StringSubcategoryRandMutator

StringSubcategoryRandMutator,

StringSubcategoryRandMutator

));

let mut stages = tuple_list!(

StringIdentificationStage::new(),

StdMutationalStage::transforming(mutator)

);

fuzzer

.fuzz_loop(&mut stages, &mut executor, &mut state, &mut mgr)

.expect("Error in the fuzzing loop");

}

Code B.2: SCFuzzLibAFL - Execution Time Version

/ SP: MaxTimeFeedback Implementation

#[derive(Serialize, Deserialize, Clone, Debug)]

pub struct MaxTimeFeedback {

name: String,

runtime: Duration,

}

impl<S> Feedback<S> for MaxTimeFeedback

where

S: State,

{

#[allow(clippy::wrong_self_convention)]

fn is_interesting<EM, OT>(

&mut self,

_state: &mut S,

_manager: &mut EM,

input: &S::Input,

observers: &OT,

_exit_kind: &ExitKind,

) -> Result<bool, Error>

where

EM: EventFirer<State = S>,

OT: ObserversTuple<S>,

{

let observer =

observers.match_name::<TimeObserver>(self.name()).unwrap();↪

let maybe_runtime = *observer.last_runtime();

match maybe_runtime {

Some(observer_runtime) => {

if observer_runtime.as_millis() > (self.runtime.as_millis()

+ Duration::from_millis(900).as_millis()) {↪

65

self.runtime = observer_runtime;

println!("Runtime: {:?}", self.runtime.as_secs());

println!("Input {:?}", input);

Ok(true)

}

else {

Ok(false)

}

},

None => Ok(false),

}

}

}

impl Named for MaxTimeFeedback {

#[inline]

fn name(&self) -> &str {

self.name.as_str()

}

}

impl MaxTimeFeedback {

#[must_use]

pub fn new(name: &'static str) -> Self {

Self {

name: name.to_string(),

runtime: Duration::from_micros(0),

}

}

#[must_use]

pub fn with_observer(observer: &TimeObserver) -> Self {

Self {

name: observer.name().to_string(),

runtime: Duration::from_micros(0),

}

}

}

Code B.3: SCFuzzLibAFL - MaxTimeFeedback Implementation

66

	Introduction
	Related Work
	Technical Background
	Fuzzing
	Concepts
	Techniques
	AFL
	LibAFL
	DifFuzz

	Side-Channel Analysis

	Design Concept for using Timing Side-Channel Information during Fuzz Testing
	Design Decisions
	Timing Side-Channel Score
	High-Level Description
	Password Checker with (Pseudo-)Timing Side-Channel
	Baseline using AFL

	Summary

	SCFuzzAFL
	AFL Functions and Modifications
	SCFuzz using AFL++
	SCFuzz with AFL
	First Attempt: AFL Instrumentation & Execution Time as a Side-Channel using the High-score Approach
	Second Attempt: AFL Instrumentation & Execution Time as a Side-Channel & Response Codes as a Pseudo-Timing Side-Channel using a High-Score Approach

	Conclusions

	SCFuzzLibAFL
	Overview of Implementation
	Fuzzing a Password-Checking Program with a Timing Leak
	First Attempt: Response Codes as a Pseudo-Timing Side-Channel using a High-Score Approach
	Second Attempt: Execution Time as a Side-Channel using a High-Score Approach

	Conclusions

	Future Work
	Conclusion
	SCFuzzAFL
	SCFuzzLibAFL

